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Abstract

Code generation, symbolic math reasoning, and
other tasks require LLMs to produce outputs that
are both syntactically and semantically correct.
Constrained LLM generation is a promising direc-
tion to enforce adherence to formal grammar, but
prior works have empirically observed that strict
enforcement of formal constraints often dimin-
ishes the reasoning capabilities of LLMs. In this
work, we first provide a theoretical explanation for
why constraining LLM outputs to very restrictive
grammars that only allow syntactically valid final
answers reduces the reasoning capabilities of the
model. Second, we demonstrate that by augment-
ing the output grammar with carefully designed
additional rules, it is always possible to preserve
the reasoning capabilities of the LLM while en-
suring syntactic and semantic correctness in its
outputs. Building on these theoretical insights,
we propose a reasoning-augmented constrained
decoding algorithm, CRANE, which effectively
balances the correctness of constrained generation
with the flexibility of unconstrained generation.
Experiments on multiple open-source LLMs and
benchmarks show that CRANE significantly out-
performs both state-of-the-art constrained decod-
ing strategies and standard unconstrained decod-
ing, showing up to a 9% improvement over base-
lines on challenging symbolic reasoning bench-
marks GSM-symbolic and FOLIO.

1. Introduction
Transformer-based large language models (LLMs) are
widely used in AI systems that interact with traditional soft-
ware tools like Python interpreters (OpenAI, 2024; Chen
et al., 2023), logical solvers (Pan et al., 2023; Olausson et al.,
2023), and theorem provers (Wu et al., 2022; Yang et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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2023). These tools impose specific syntactic and semantic
constraints on their inputs, requiring LLMs to produce out-
puts in the correct format. For instance, if an LLM provides
output to a specific logical solver (Han et al., 2024), the
output must be parsable by that solver. Similarly, Wolfram
Alpha (wolfram, 2024) translates user queries about mathe-
matical problems into a domain-specific language (DSL) to
utilize symbolic solvers. However, as highlighted in recent
studies (Ugare et al., 2024b; Lundberg et al., 2023; Poesia
et al., 2022), pre-trained LLM outputs do not always comply
with downstream tools’ input requirements. Constrained de-
coding algorithms (Ugare et al., 2024b; Poesia et al., 2022)
address this issue by projecting the LLM output onto user-
specified formal constraints (e.g., syntactic rules defined by
a context-free grammar G), thereby ensuring that the input
requirements of downstream tasks are satisfied.

As illustrated in Fig. 1, constrained decoding improves the
syntactic correctness of LLM outputs (e.g., generating a
well-formed mathematical expression). However, it does
not guarantee functional correctness (e.g., ensuring the ex-
pression correctly answers the user’s query). Recent works
such as Tam et al. (2024) have empirically observed that
imposing constraints on LLM outputs can, in some cases,
reduce functional correctness for specific tasks. Tam et al.
(2024) attributes this reduction in functional accuracy to
a decline in the LLM’s reasoning capabilities under con-
strained decoding. This observation raises the following
open questions:

• RQ1: Do LLMs truly lose reasoning capabilities under
constrained decoding?

• RQ2: How can we leverage the benefits of constrained
decoding in reducing syntax errors while preserving the
unconstrained reasoning capabilities of LLMs?

Key Challenges: First, we need to formally identify the
root cause of the reduction in functional accuracy of end-
to-end systems when a pre-trained LLM operates under
constrained generation. Unlike the empirical observations
in (Tam et al., 2024), we seek a formal justification for
this reduction that is not limited to specific LLMs used
in experiments but extends to any LLM, including more
powerful ones developed in the future.

Second, we must design cost-efficient decoding strategies
that address the shortcomings of existing constrained decod-
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CRANE: Expressive Grammar-Constrained LLM Generation

Figure 1. An example from the GSM-symbolic dataset (variables in blue) where unconstrained generation produces syntactically incorrect
output, while constrained generation provides a syntactically valid but incorrect answer. CRANE, however, generates a correct answer.

ing methods while improving functional accuracy. In this
work, we do not consider task-specific fine-tuning of LLMs,
as fine-tuning for each task is compute-intensive. Unlike
constrained decoding, fine-tuning does not guarantee that
the LLM output adheres to formal constraints.

Contributions: We make the following contributions to
improve the functional accuracy of the end-to-end system:

• We theoretically show that LLMs with a constant number
of layers, which are known to be capable of simulating
n steps of any given Turing machine M with O(n) rea-
soning steps (Merrill & Sabharwal, 2024), can only solve
problems within a relatively restrictive circuit complexity
class when constrained to generate outputs that always
conform to a restrictive grammar G defining only the valid
output strings. This demonstrates that, for restrictive gram-
mar, constrained decoding reduces the problem-solving
capabilities of LLMs.

• We theoretically show that the loss of expressivity of
LLMs under constrained decoding arises because the out-
put grammar G is too restrictive to accommodate the inter-
mediate reasoning steps required to compute the answer.
We further demonstrate that augmenting the grammar G
with specific additional production rules enables the LLM
to generate the intermediate reasoning steps while ensur-
ing that the final output always adheres to the intended
output structure. With the augmented grammar Ga, the
LLM retains its expressivity under constrained decoding.

• We propose a simple and cost-efficient decoding strat-
egy, CRANE (Constrained Reasoning Augmented
Generation). CRANE effectively alternates between un-
constrained generation for reasoning and constrained gen-
eration for producing structurally correct outputs. This
allows the model to produce syntactically valid outputs
while enabling the LLM to reason. Our detailed exper-
iments on multiple open-source LLMs and benchmarks

demonstrate that CRANE significantly outperforms both
SOTA constrained decoding strategies and standard un-
constrained decoding, showing up to a 9% improvement
over baselines on challenging symbolic reasoning bench-
marks GSM-symbolic (Mirzadeh et al., 2024)) and FO-
LIO (Han et al., 2024).

Next, we provide the notations and necessary background
on constrained decoding, including the definition of Turing
machines and relevant circuit complexity classes.

2. Preliminaries
Notations: In the rest of the paper, we use small case letters
(x) for constants, bold small case letters (xxx) for strings,
capital letters X for functions, · for string concatenation, |xxx|
to dentone the length of the string xxx. We use LLM to refer
to transformer-based LLMs with a fixed number of layers.

2.1. Constrained LLM Decoding

Autoregressive language models L decode output iteratively
by generating tokens from a probability distribution over
the vocabulary V . The distribution is derived by applying
the softmax function to the model’s scores S. Common
decoding methods include greedy decoding, temperature
sampling, and beam search. Constrained LLM decoding
extends this process by excluding specific tokens at certain
positions, such as avoiding harmful words or adhering to
a user-defined output grammar for languages like JSON or
SQL (Poesia et al., 2022; Ugare et al., 2024c; Willard &
Louf, 2023). At each decoding step, a binary mask m ∈
{0, 1}|V |, generated by a function fm, specifies valid tokens
(mi = 1) and excluded tokens (mi = 0). Decoding is
then performed on the masked probability distribution m⊙
softmax(S), where ⊙ denotes element-wise multiplication.
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CRANE: Expressive Grammar-Constrained LLM Generation

2.2. Deterministic LLM Decoding

CRANE is compatible with various decoding strategies,
both constrained and unconstrained, allowing the output
of L to be stochastic. However, following existing works
(Hahn, 2020; Merrill & Sabharwal, 2023; Li et al., 2024)
and for simplicity in the theoretical setup in Section 3, we
assume that the output of L on any input string xxx is deter-
ministic in both constrained and unconstrained settings.

Similar to prior works (Merrill & Sabharwal, 2023; 2024),
we model a single autoregressive step as a deterministic
function Lf that predicts the next token given a specific
input. Formally,

Definition 2.1 (Deterministic LLM Step). A single autore-
gressive step of an LLM is modeled as a deterministic func-
tion Lf : V ∗ → V , where V is the finite vocabulary and V ∗

represents the set of all finite strings over V . For an input
string xxx ∈ V ∗, the LLM predicts the next token Lf (xxx).

Definition 2.2 (Deterministic Unconstrained Decoding).
For an input string xxx, the deterministic output string yyy
selected from the output distribution of a LLM using a
decoding algorithm (e.g., greedy decoding) is denoted as
yyy = L(xxx) where L : V ∗ → V ∗. L(xxx) is the most likely
output sequence according to learned distribution on xxx.

The output yyy = L(xxx) is computed iteratively with |yyy| au-
toregressive steps defined by Lf . For each 1 ≤ i ≤ |yyy|, and
the recurrence relationL(i)

f (xxx) = L(i−1)
f (xxx)·Lf (L(i−1)

f (xxx))

whereL(0)
f (xxx) = xxx and · denotes string concatenation. Here,

xxx ·yyy = L|yyy|
f (xxx). Similarly, under constrained decoding with

a grammar G we define:

Definition 2.3 (Deterministic Constrained Decoding un-
der Grammar). Under constrained decoding with a formal
grammar G, the output string yyyG is selected from the con-
strained output distribution and is denoted as yyyG = LG(xxx).
The output of i-th constrained autoregressive step with G is
xxx · yyy(i)G = L(i)

G (xxx) and xxx · yyyG = L(|yyy|)
G (xxx).

The constrained output yyyG is always in the grammar yyyG ∈
L(G) where L(G) is the language defined by G. For sound-
constrained decoding algorithms, if the unconstrained out-
put yyy = L(xxx) in the grammar yyy ∈ L(G), the constrained
output remains unchanged, i.e., L(xxx) = LG(xxx).

2.3. LLM Expressivity

We discuss the notations and background related to Turing
machines, and relevant uniform circuit complexity classes.
Turing machines are popular mathematical computation
models used to analyze resource requirements (e.g. time
and space complexity) and the hardness of computation
problems. Formally, a Turing machine is defined as:

Definition 2.4 (Turing Machine). A Turing machine M

with k work tapes and an output tape is a 8-tuple

M = ⟨Σ,Γ, k, b,Q, q0, δ, F ⟩,

where Σ is the finite input alphabet, Γ is the finite tape
alphabet with Σ ⊆ Γ, b ∈ Γ \ Σ is a special blank symbol,
Q is a finite set of states, q0 ∈ Q is the initial state, δ :
(Q \ F ) × Γk+2 → Q × Γk+1 × {0,+1,−1}k+2 is the
transition function (where −1, 1, 0 represent moving the
tape head left, right, or staying in place, respectively), and
F ⊆ Q is the set of halting states.

Let Σ∗ denote the set of all finite strings over the input
alphabet Σ. Given an input string sss ∈ Σ∗, the computation
of Mon s is a sequence of configurations starting from
the initial configuration. Each configuration γ is a tuple
containing the current state q ∈ Q, the contents of the input
tape, the k work tapes, the output tape, and the current head
positions of all k + 2 tapes. For each configuration, γi (i ∈
N), the transition function δ computes the next configuration
γi+1 based on the current state q and the values on the
k + 2 tapes at the current head positions. It updates the
head positions, writes to the output tape (possibly leaving
it unchanged if no new symbol is written), and advances
to the next configuration. For each i, computation of γi+1

from γi defines a single step of the Turing machine.

The computation of M on input sss halts if M reaches a
halting state q ∈ F . If M halts, the output corresponding to
sss is written on the output tape. Additional details about the
computation of the Turing machine are in Appendix A.

Before discussing existing expressivity results for constant-
layer LLMs, we briefly introduce relevant uniform constant-
depth circuit complexity classes, e.g. logspace uniform-
TC0, which provide an upper bound on the computational
power of LLMs that do not employ reasoning steps, as seen
in methods like Chain-of-Thought (Wei et al., 2022).

Definition 2.5 (Boolean Circuit). A Boolean circuit is a
computational model for evaluating Boolean functions over
fixed-length binary strings. It is represented as a directed
acyclic graph (DAG), where the leaf nodes correspond to
input binary variables or their negations, and the internal
nodes perform operations from a predefined set of opera-
tions B (e.g., AND (∧), OR (∨), etc.). One or more marked
nodes in the graph represent the circuit’s output.

The structure of the DAG specifies the computation of the
Boolean function by propagating input values through the
graph. The complexity of a circuit is determined by its
size (the number of nodes) and depth (the longest path in
the graph). Since a single circuit only defines a boolean
function for fixed-length inputs, a family of circuits is re-
quired—one for each input length—to characterize a com-
putational problem where input lengths vary. Unlike Turing
machines, whose computation does not depend on input
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length, circuit families have a separate circuit for each input
length, which can differ entirely. This non-uniformity can
lead to degenerate cases where non-uniform circuit fam-
ilies solve undecidable problems (Arora & Barak, 2009).
To address this issue, complexity theorists enforce unifor-
mity conditions, requiring circuits for different input sizes
to be related, resulting in uniform circuit families. For
further details and formal definitions of circuit classes, re-
fer to (Arora & Barak, 2009). In this work, we focus on
constant-depth, polynomial-sized logspace-uniform thresh-
old circuits (TC0), where B contains only threshold gates
(a formal definition is in Appendix B).

3. Expressivity of Constrained Decoding
First, we show that any constant-layer LLM L under con-
strained decoding loses expressivity. We identify the class
of problems and the corresponding output grammars G such
that when imposed on the outputs of any constant-layer
LLM, the problems cannot be solved unless there is a col-
lapse in fundamental complexity classes that are widely
believed to be unequal (e.g., TC0 ̸= NL)1.

3.1. Limitation of Constrained Decoding

Next, we present the high-level idea behind Proposition 3.1
that shows the limitation of constrained LLM decoding
when the output grammar is too restrictive. We consider
problems where the number of possible outputs is finite, and
thus the set of all possible outputs O can be expressed as
a simple regular language. Consequently, Gc that encodes
the output set O, i.e., O = L(Gc), where L(Gc) denotes
the language defined by the grammar Gc. For instance, any
decision problem (yes/no answer) such as st-connectivity
that asks for vertices s and t in a directed graph, if t is reach-
able from s can be answered within a single-bit output i.e.
L(Gc) = {0, 1}. This implies that constrained decoding
with the output grammar Gc allows only a single autoregres-
sive step for any L on all inputs.

A series of existing works (Hahn, 2020; Hao et al., 2022;
Merrill et al., 2022; Merrill & Sabharwal, 2023) establish
that, under suitable assumptions, a single autoregressive
step on an input with length n for any constant-depth LLM
can be represented as a constant-depth circuit. Since, for de-
cision problems, the constrained decoding step permits only
a single autoregressive step, any LLM can only solve prob-
lems within the corresponding circuit complexity class. We
build on the most recent result from (Merrill & Sabharwal,
2023), which shows that a single autoregressive step of any
LLM with a constant number of layers on an input of length
n can be simulated by a logspace-uniform constant-depth
threshold circuit family. This result allows the LLM to use
floating-point numbers with log(n) precision when process-

1NL refers to nondeterministic log-space

ing inputs of size n, ensuring that the precision scales with n
and preventing floating-point representation issues for large
n. We denote such LLMs as log-precision LLMs.

Letxxx·yyy(i) denote the output after the i-th autoregressive step
of an LLM L under constrained decoding with an output
grammar G on input xxx. Then, we have xxx · yyy(i) = L(i)

G (xxx),
and for any i, yyy(i) is always a valid prefix of a string in
L(G), i.e., there exists a (possibly empty) string ααα(i) such
that yyy(i) · ααα(i) ∈ L(G). Now, for any output grammar Gc

where the output set O = L(Gc) is finite, we show that
the output LGc

(xxx) for any input xxx of size |xxx| = n can be
computed using constant-depth threshold circuits.

Proposition 3.1. For any log-precision LLM L with con-
stant layers there exists a logspace-uniform thershold circuit
Thn such thatLGc

(xxx) = Thn(xxx) holds for all inputsxxx with
size |xxx| = n and n ∈ N.

Proof: The formal proof is in Appendix C.

From Proposition 3.1, it follows that for any decision prob-
lem under constrained decoding, an LLM can only solve
problems within the logspace-uniform TC0 class (constant-
depth threshold circuits). Consequently, any decision prob-
lem believed to lie outside this class cannot be solved un-
der constrained decoding. The previously mentioned st-
connectivity problem is known to be NL-complete (Arora
& Barak, 2009). This implies that unless TC0 = NL, no
LLM under constrained decoding can solve st-connectivity.
Additionally, (Li et al., 2024; Merrill & Sabharwal, 2024)
show that given any Turing machine M there exists a log-
precision LLM with a constant number of layers that can
simulate O(t(n)) steps of M using O(t(n)) autoregressive
steps, where t(n) denotes a polynomial in the input size n.

Lemma 3.2. For any Turing machine M with tape alphabet
Γ, there exists a constant depth LLM LM with finite vocabu-
lary Γ ⊆ VM and log-precision that can simulate t(n) steps
of M with t(n) autoregressive steps.

Proof: The proof follows from Theorem 2 in (Merrill &
Sabharwal, 2024) further details in Appendix C.

Proposition 3.1 and Lemma 3.2 together imply that there ex-
ist problems, such as st-connectivity, an LLM can solve that
in an unconstrained setting but cannot be solved under con-
strained decoding (unless logspace-uniform TC0 = NL).

3.2. Reasoning with Augmented Grammar

The reduction in LLM expressivity under constrained de-
coding, as established in Proposition 3.1, arises primarily
because the language of all valid output strings, L(Gc),
is too restrictive and does not permit large (non-constant)
reasoning chains. This naturally leads to the question of
whether it is possible to augment any output grammar G
with additional production rules to construct an augmented
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grammar Ga that can accommodate reasoning steps while
preserving the expressivity of L even under constrained
decoding. At the same time, Ga should remain nontriv-
ial—meaning it should not accept all possible strings, as in
the unconstrained setting—so that it aligns with the practi-
cal objective of constrained decoding: guiding the LLM to
generate syntactically and semantically valid outputs.

To achieve this, we enforce that the augmented grammar
Ga always follows the structure Ga → RG, where the
nonterminal symbol R captures the reasoning steps, and
G represents the final output. This guarantees that for any
string sss ∈ L(Ga), the final answer aaa extracted from sss =
rrr · aaa always belongs to the original output grammar G, i.e.,
aaa ∈ L(G), with rrr serving as the reasoning sequence leading
up to the final output.

Formally, we show that for any Turing machine M and a
grammar G containing all valid outputs of M , there exists
an LLM LM with a constant number of layers and log-
precision, along with an augmented grammar Ga in the
specified format, such thatLM can simulate t(n) steps of M
using t(n) autoregressive steps under constrained decoding
with Ga. Here n ∈ N and t(n) is a polynomial over n. The
augmented grammar Ga may not be unique, and we provide
one such construction.

At a high level, LM simulates the Turing machine M by
computing the encoded representations γi of the machine’s
configurations γi at each step i and storing them within the
reasoning component (i.e., the string rrr) of the output. Dur-
ing each autoregressive step, LM generates the next configu-
ration based on the transition function of M and appends its
encoding to the reasoning sequence. This process continues
until M reaches a halting state, at which point LM produces
the final output aaa, which belongs to L(G). For any given
M , we define the rules RM that can parse the encodings γ
of all possible configurations γ. This ensures that the output
LGa

(xxx) represents the full reasoning-augmented sequence,
i.e., γ1 · · · γt(n) ·M(xxx), where M(xxx) is the final output of
M on input xxx of size n after t(n) computational steps. The
encodings γ1, . . . , γt(n) correspond to the configurations
γ1, . . . , γt(n), as described below.

We begin by defining the vocabulary VM for LM , which
contains all tape symbols Γ of M along with a finite set of
auxiliary symbols γ that encode the corresponding config-
urations γ. Similar to prior works (Merrill & Sabharwal,
2024), each configuration encoding γ represents the cur-
rent state q, the symbols at the current head position of
k + 2 tapes (input, output and k work tapes), and the head
movement directions {0,+1,−1} for each tape. Directions
{0,+1,−1} denote either staying in place (0), moving left
(−1), or moving right (+1) by a single position. Since the
set of states Q, the tape alphabet Γ, and the number of tapes
k are all constants, the total number of possible encodings γ

is also constant. Let Γ denote the set of all possible configu-
ration encodings, i.e., Γ = {γ(1), . . . , γ(l)}, where l = |Γ|.
Given Γ is finite and enumerable, we can define the rules of
the augmented grammar Ga accordingly as follows.

Ga → RMG; RM → SRM ; S → γ(1) | · · · |γ(l)

The set of reasoning strings in L(RM ) essentially define a
regular language over the configuration encodings Γ. Let,
for any input xxx with size n = |xxx| a given Turing machine
M halts and compute the output M(xxx) in t(n) steps that are
polynomial in n. Then there exist LM compute M(xxx) with
t(n) autoregressive steps under constrined decoding with
the augmented grammar Ga → RMG. Suppose, LM,Ga

(xxx)
denotes the output of the LLM LM on input xxx under con-
strained decoding with grammar Ga then

Proposition 3.3. For any Turing machine M with tape
alphabet Γ, there exists a constant depth LLM LM with
finite vocabulary Γ ⊆ VM and log precision such that for
any input xxx with |xxx| = n, LM,Ga

(xxx) = rrr · M(xxx) with
r ∈ V ∗

M assuming M halts on xxx in t(n) steps.

Proof: The proof is in Appendix C.

4. CRANE Algorithm
Given any Turing machine M , Proposition 3.3 establishes
that constrained decoding with the augmented grammar Ga

on a specific LLM LM can simulate the computation of
M . However, this result does not directly translate into a
practical constrained decoding algorithm that preserves the
expressivity of general LLMs. The construction assumes
a specific LLM LM with the vocabulary VM and knowl-
edge of the particular Turing machine M for defining the
rules RM . In practice, we require an efficient approach
that can be applied to diverse open-source LLMs, various
grammars, and different constrained decoding algorithms.
Importantly, we know that enforcing the output grammar G
from the beginning can limit expressivity. Instead, we im-
pose grammar constraints judiciously to avoid restricting the
LLM’s reasoning capabilities. For example, in the case of a
reasoning-augmented output of the form γ1 · · · γt(n) ·M(xxx),
we apply constrained decoding only from the t(n) + 1-th
autoregressive step onward, ensuring that the reasoning pro-
cess remains unrestricted while the final answer adheres to
the desired grammar.

The primary challenge here is deciding when to transition
between an unconstrained generation for reasoning and a
constrained generation. For instance, grammar for general-
purpose programming languages such as Python can allow
any text string at the start (e.g. program starting variable
names) making it hard to detect the end of reasoning string.
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To avoid this, we augment the output grammar with specific
delimiter symbols S1 and S2 that mark the start and end
of the constrained generation. We incentivize the LLM
to generate these delimiters via explicit instructions in the
prompt and few-shot examples. This aligns with common
general-purpose LLMs that already use specific delimiters
such as backticks (‘‘‘) for programs like python, SQL, and
(<<, >>) to enclose math-expression blocks. This approach
allows a simple and cost-efficient approach for detecting
the transitions to and from constrained decoding. For the
construction in the previous section, in this setup, we will
generate the string rrr ·S1 ·M(xxx) ·S2 where the reasoning rrr is
generated unconstrained and the LLM moves to constrained
mode after seeing the symbol S1. However, in practical
cases, the delimiters may be generated multiple times (ie.
for intermediate operations), even during the reasoning step.
Therefore, upon encountering the end symbol S2, we switch
back to unconstrained generation to avoid unnecessarily
restricting the output.

Figure 2. CRANE adaptively switches between constrained LLM
generation and unconstrained LLM generation based on start and
end delimiters (in this example << and >>). Using these delimiters,
CRANE dynamically tracks which windows (highlighted in the
figure) of the LLM generation constraints should be applied to.

We implement our approach into the CRANE algorithm
(Algo 1), which extends standard autoregressive LLM gen-
eration. CRANE takes an arbitrary LLM, constrained de-
coding algorithm (denoted as CSD), output grammar G, and
symbols S1 and S2 as input. It first initializes CSD with G′,
the output grammar augmented with S1 and S2. CRANE
starts in unconstrained generation and maintains a pointer
that marks the start of the current window of LLM gen-
eration following the last constrained generation. In each
iteration, the algorithm checks if S1 is present in the current
generation window currGen, which is the portion of the
sequence from the current pointer position onwards. If S1 is
detected, CRANE switches to constrained generation mode.
In this mode, the current constrained window (the portion of
currGen that is in G′) is extracted, and the next token S1

is computed based on the constraints defined by the CSD.
If S1 is not present, the next token is computed directly
without any constraints applied. Additionally, if the current
constrained window ends with S2, the pointer is updated to
the length of the current token sequence, effectively switch-

Algorithm 1 CRANE Algorithm

1: Input: LLM, tokens, CSD (constrained decoder), G
(output grammar), S1 (start delimiter), S2 (end delim-
iter)

2: Output: Output string
3: G′ ← S1GS2

4: CSD.INITIALIZE(G′)
5: pointer← len(tokens)
6: isConstrained← False
7: while True do
8: currGen← detokenize(tokens[pointer :])
9: if S1 ∈ currGen then

10: isConstrained← True
11: else
12: isConstrained← False
13: if isConstrained then
14: constrained← extractConstrained(currGen)
15: ti ∼ LLM(tokens)⊙ CSD(constrained)
16: else
17: ti ∼ LLM(tokens)
18: tokens← tokens + ti
19: if ti = EOS then
20: break
21: if isConstrained then
22: constrained← constrained + detokenize(ti)
23: if constrained.endswith(S2) then
24: pointer← len(tokens)
25: return detokenize(tokens)

ing back to unconstrained generation until S1 is generated
again. Figure 2 further illustrates LLM generation with
CRANE. The underlined portion of the LLM generation
represents currGen, and the current constrained window
is highlighted in yellow.

5. Evaluation
In this section, we evaluate CRANE on a math reasoning
task (GSM-Symbolic (Mirzadeh et al., 2024)) and a logical
reasoning task (FOLIO (Han et al., 2024)) and demonstrate
significant improvement over both unconstrained and SOTA
constrained generation baselines.

Experimental Setup. We run experiments on a 48-core
Intel Xeon Silver 4214R CPU with 2 NVidia RTX A5000
GPUs. CRANE is implemented using PyTorch (Paszke
et al., 2019) and the HuggingFace transformers library (Wolf
et al., 2020). Our primary baseline for unconstrained gen-
eration is Chain-of-Thought (CoT) Prompting (Wei et al.,
2022), which enables LLMs to decompose and reason about
a problem through a series of intermediate steps before out-
putting the final answer. Furthermore, we run constrained
semantic generation for GSM-Symbolic (Mirzadeh et al.,
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Table 1. Comparison of CRANE and baselines with different mod-
els on GSM-Symbolic.

Model Method Acc. (%) Parse (%) Tokens

Unconstrained w/o CoT 21 97 23.34
Constrained 22 97 25.29

Qwen2.5-1.5B-Instruct Unconstrained CoT 26 90 128.97
CRANE 31 100 131.3

Unconstrained w/o CoT 36 94 17.92
Constrained 35 99 25.28

Qwen2.5-Coder-7B-Instruct Unconstrained CoT 37 88 138.38
CRANE 39 94 155.32

Unconstrained w/o CoT 27 89 25.7
Constrained 29 99 26.81

Qwen2.5-Math-7B-Instruct Unconstrained CoT 29 82 155.26
CRANE 38 94 158.86

Unconstrained w/o CoT 21 73 128.38
Constrained 26 98 35.97

Llama-3.1-8B-Instruct Unconstrained CoT 30 95 163.55
CRANE 33 95 170.22

2024) with the ITERGEN library (Ugare et al., 2024a) and
use the SYNCODE framework for FOLIO (Han et al., 2024)
evaluation. In all experiments, CRANE is initialized with
the same constrained decoders and uses the same constraints
as the constrained generation baselines.

GSM-Symbolic: We first evaluate CRANE on GSM-
Symbolic (Mirzadeh et al., 2024), a dataset consisting of
math word problems designed to assess LLMs’ mathemati-
cal reasoning skills. In the word problems, names and nu-
merical values are replaced with symbolic variables, and the
LLMs are tasked with generating correct symbolic expres-
sion solutions (see Appendix C.1 for examples). To evaluate
correctness, we extract the final expressions from the LLM
generations and verify if they are functionally equivalent to
the ground truth expressions with the Z3 solver (De Moura
& Bjørner, 2008).

We compare CRANE against three baselines: (1) uncon-
strained generation without chain-of-thought prompting, (2)
unconstrained generation with CoT, and (3) constrained
generation. We use ITERGEN for the constrained gen-
eration baseline and also initialize CRANE with ITER-
GEN. For ITERGEN and CRANE, we enforce syntac-
tic constraints via the context-free grammar provided in
Appendix C.5.1 and apply the semantic constraint ensur-
ing that generated expressions contain only valid problem-
defined variables. Since ITERGEN uses selective rejec-
tion sampling to enforce semantic constraints, we also in-
clude comparisong against unconstrained generation with
sampling in Table 4 in the Appendix. For CRANE,
we use << and >> for the delimeters S1 and S2, re-
spectively. We evaluate four LLMs for the experiment:
Qwen2.5-1.5B-Instruct (Qwen, 2024), Qwen2.5-Math-7B-
Instruct (Qwen, 2024), Qwen2.5-Coder-7B-Instruct (Qwen,
2024),and Llama-3.1-8B-Instruct (Llama, 2024). For all
models, we use greedy decoding with a maximum new to-
ken limit of 600. Additionally, we prompt the LLMs with
the 8-shot examples from GSM-Symbolic (Mirzadeh et al.,
2024) (the prompts can be found in Appendix C.1).

Figure 3. Accuracy (%) of Qwen2.5-Math-7B-Instruct By Method
and Number of Shots on GSM-Symbolic

Table 1 compares the performance of CRANE with the
baseline methods. The Accuracy (%) column reports the
percentage of functionally correct LLM-generated expres-
sions, Parse (%) indicates the percentage of syntactically
valid expressions (i.e., expressions without invalid opera-
tions), and Tokens provides the average number of tokens
generated.

As shown in the table, CRANE consistently improves func-
tional correctness across all evaluated models. For exam-
ple, with the Qwen2.5-Math-7B-Instruct model, CRANE
achieves 38% accuracy, outperforming both constrained
generation and unconstrained generation with CoT, which
achieves 29% accuracy. Similarly, with the Qwen2.5-1.5B-
Instruct model, CRANE achieves 31% accuracy—5 per-
centage points higher than an unconstrained generation with
CoT and 9 percentage points higher than a constrained gen-
eration. Moreover, CRANE significantly enhances the syn-
tactic correctness of generated expressions compared to
unconstrained generation. Notably, none of the expressions
generated using CRANE contain syntax errors, whereas
10% of the expressions from unconstrained generation with
CoT do. Although, for several instances, CRANE produces
slightly more syntax errors than a purely constrained gen-
eration, it offers a substantial improvement in functional
correctness over this baseline.

Ablation Study on Few-shot examples: We evaluate
CRANE and baselines on varying numbers of few-shot
examples in the prompt and display the results for Qwen2.5-
Math-7B-Instruct in Figure 3. Results for all models are
presented in Table 3 in the Appendix. CRANE consis-
tently achieves higher accuracy on GSM-Symbolic than the
baselines for all evaluated numbers of few-shot examples.

FOLIO: We further evaluate CRANE on the validation
split of FOLIO dataset, which comprises 203 expert-written
natural language reasoning instances and corresponding
first-order logic (FOL) annotations. We evaluate the ability
of LLMs to correctly translate the natural language reason-
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ing instances into FOL formulas and leverage Prover9 (Mc-
Cune, 2005–2010) a FOL solver to verify the correctness of
the LLM-generated FOL formulas.

We compare CRANE against grammar-constrained genera-
tion with SYNCODE using the Prover9 grammar (Appendix
C.5.2). The Prover9 grammar divides FOL formulas into
Predicates, Premises, and Conclusions and allows interme-
diate reasoning in comments (an example can be found in
Appendix C.2). We also compare CRANE against un-
constrained generation with CoT. For all approaches and
models, we run greedy decoding with a maximum new to-
kens limit of 800 and use 2 few-shot examples in the prompt.
We also compare CRANE against unconstrained CoT with
temperature sampling in Table 5 in the Appendix.

Table 2 presents the results of our experiment. The Ac-
curacy (%) column in the table reports the percentage of
functionally correct FOL translations while the Compiles
(%) column reports the percentage of FOL formulas ex-
tracted from LLM output that are syntactically valid and
compile into a Prover9 program. CRANE outperforms the
unconstrained and constrained generation baselines for all
models evaluated.

Table 2. Comparison of CRANE and baselines with various mod-
els on FOLIO.

Model Method Acc. (%) Compiles (%) Tokens

Unconstrained CoT 18.72 54.19 629.59
Qwen2.5-Math-7B-Instruct Constrained 28.08 76.85 679.44

CRANE 31.03 75.86 690.17

Unconstrained CoT 36.95 70.94 350.64
Qwen2.5-7B-Instruct Constrained 37.44 87.68 775.62

CRANE 42.36 87.68 726.88

Unconstrained CoT 32.02 57.14 371.52
Llama-3.1-8B-Instruct Constrained 39.41 86.21 549.75

CRANE 46.31 85.71 449.77

Limitation: Our work has the following limitations. First,
Proposition 3.1 only demonstrates a reduction in expressiv-
ity when the language L(Gc) is finite. This leaves open
the question of whether Proposition 3.1 can be extended
to grammars G where L(G) is infinite. Second, CRANE
for constrained decoding relies on existing tools (Ugare
et al., 2024b) that require access to output logits, rendering
CRANE inapplicable to models that do not expose logits.

6. Related Works
Constrained LLM Decoding: Recent works have intro-
duced techniques to enforce LLM generations to adhere to
a context-free grammar using constrained decoding (Ugare
et al., 2024c; Willard & Louf, 2023; Beurer-Kellner et al.,
2024; Melcer et al., 2024a). Additionally, Poesia et al.
(2022); Ugare et al. (2024a) have extended grammar-guided
generation to incorporate task-specific semantic constraints.
These approaches demonstrate that constrained decoding
can improve the syntactic and semantic quality of LLM
outputs for various structured generation tasks.

More recently, Tam et al. (2024) demonstrated that con-
strained structured generation can negatively impact the
quality of generated outputs. Similarly, Park et al. (2024)
showed that greedily masking out tokens that do not lead to
a valid string during next-token prediction can distort the
output distribution, causing it to deviate from the true distri-
bution of all grammatically valid outputs of L for a given
input. To mitigate the distortion introduced by the greedy
masking approach, these “grammar aligned” methods (Park
et al., 2024; Melcer et al., 2024b) use a trie to track previ-
ous generations, reducing generation divergence iteratively.
However, they are computationally expensive and require a
large no. of resamplings per prompt to converge.

In contrast, our work focuses on the fundamental question
of the theoretical expressivity of any constant layered con-
strained LLM, even under an ideal constrained decoding
algorithm, and uses the insights to propose a practical so-
lution. We propose an adaptive constrained decoding ap-
proach that can support various constrained decoding meth-
ods, including grammar-aligned techniques while preserv-
ing the LLM’s expressivity by reasoning chains.

LLM Expressivity: (Strobl et al., 2024) provides a detailed
survey of existing results from the perspective of formal
language theory and complexity classes. A series of existing
works (Hahn, 2020; Hao et al., 2022; Merrill et al., 2022;
Merrill & Sabharwal, 2023) establish that, under suitable
assumptions, a single autoregressive step on an input of
any length for a constant-depth LLM can be represented
as a constant-depth Boolean circuit. (Merrill & Sabharwal,
2024; Li et al., 2024) show that the expressivity of LLMs
significantly improves under popular reasoning approaches
like Chain of Thought (CoT) (Wei et al., 2022), where LLMs
take intermediate steps before generating the final answer.
To the best of our knowledge, there is no prior work on
LLM expressivity under grammar constraints.

7. Conclusion
In conclusion, tasks requiring both syntactic and seman-
tic correctness, such as code generation and symbolic
math reasoning, benefit significantly from constrained de-
coding strategies. However, strict enforcement of con-
straints can hinder LLM reasoning capabilities. Theoret-
ically, we demonstrate why restrictive grammars dimin-
ish reasoning and show that augmenting grammars with
carefully designed rules preserves reasoning while main-
taining correctness. Building on these insights, our pro-
posed reasoning-augmented constrained decoding algo-
rithm, CRANE, achieves state-of-the-art performance, with
up to 9% improvement on symbolic reasoning benchmarks
such as GSM-symbolic and FOLIO, effectively balancing
the strengths of constrained and unconstrained generation.
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8. Impact and Ethics
This paper introduces research aimed at advancing the field
of Machine Learning. We do not identify any specific so-
cietal consequences of our work that need to be explicitly
emphasized here.
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A. Turing Machine Computation
A Turing machine processes an input string xxx ∈ Σ∗. Its configuration consists of a finite state set Q, an input tape c0, k
work tapes c1, . . . , ck, and an output tape ck+1. Additionally, each tape τ has an associated head position hτ .

Initially, the machine starts in the initial state q0 ∈ Q with the input tape c00 containing xxx, positioned at index 0, and
surrounded by infinite blank symbols (b). The head on the input tape is set to h0

0 = 0, while all other tapes contain only
blank symbols bs and have their heads positioned at 0.

At each time step i, if qi /∈ F (F is a set of halting states), the configuration updates recursively by computing:

⟨qi+1, γ
i
1, . . . , γ

i
k+1, d

i
0, . . . , d

i
k+1⟩ = δ(qi, c

i
0[h

i
0], . . . , c

i
k+1[h

i
k+1])

where δ is the transition function. The machine updates each tape τ by setting ci+1
τ [hi

τ ] = γi
τ , leaving all other tape cells

unchanged. The head position for each tape is updated as hi+1
τ = hi

τ + diτ . If qi ∈ F , the Turing machine halts and outputs
the sequence of tokens on the output tape, starting from the current head position and continuing up to (but not including) the
first blank symbol (b). A Turing machine can also function as a language recognizer by setting the input alphabet Σ = {0, 1}
and interpreting the first output token as either 0 or 1.

B. Thershold Circuit Class
TC0 is a class of computational problems that can be recognized by constant-depth, polynomial-size circuits composed of
threshold gates. A threshold gate, such as θ≤k, outputs 1 if the sum of its input bits is at most k, while θ≥k outputs 1 if the
sum is at least k. These circuits also include standard logic gates like ∧, ∨, and ¬ as special cases of threshold functions.
Since TC0 circuits can simulate AC0 circuits ( a polysize, constant-depth {∧,∨,¬}-circuit family), they are at least as
powerful as AC0 in the computational hierarchy. The circuit families we have defined above are non-uniform, meaning
that there is no requirement for the circuits processing different input sizes to be related in any way. In degenerate cases,
non-uniform circuit families can solve undecidable problems making them an unrealizable model of computation (Arora &
Barak, 2009). Intuitively, a uniform circuit family requires that the circuits for different input sizes must be ”somewhat
similar” to each other. This concept is formalized by stating that there exists a resource-constrained Turing machine that,
given the input 1n, can generate a serialization of the corresponding circuit Cn for that input size. Specifically, a logspace
uniform TC0 family can be constructed by a logspace-bounded Turing machine from the string 1n.

C. Proofs
Lemma C.1 (Constant depth circuit for Lf ). For any log-precision constant layer transformer-based LLM L with finite
vocabulary V , a single deterministic auto-regressive step Lf (x) operating on any input of size n ∈ N with xxx ∈ V n can be
simulated by a logspace-uniform threshold circuit family of depth C where C is constant.

Proof. The construction is from Theorem 2 in (Merrill & Sabharwal, 2023).

Proposition 3.1. For any log-precision LLM L with constant layers there exists a logspace-uniform thershold circuit Thn

such that LGc
(xxx) = Thn(xxx) holds for all inputs xxx with size |xxx| = n and n ∈ N.

Proof. The language L(Gc) is finite; therefore, for any string sss ∈ L(Gc), the length satisfies |sss| ≤ N , where N is a constant.
Consequently, for any input xxx, the output yyyG = LG(xxx) has a constant length, i.e., |yyyG| ≤ N . The number of autoregressive
steps is also bounded by N .

From Lemma C.1, each unconstrained autoregressive computation Lf (xxx) can be simulated by a constant-depth threshold
circuit C. This implies that Lf (xxx,Gc) can also be simulated by a constant-depth threshold circuit since it only involves an
additional multiplication by a constant-sized precomputed Boolean mask {0, 1}|V | (see Section 2).

Given that the number of autoregressive steps is a constant N , and each step can be simulated by a constant-depth circuit C,
we can simulate all N steps using a depth N × C circuit by stacking the circuits for each step sequentially. For uniformity,
we are just stacking together a constant number of constant depth circuits we can do it in a log-space bounded Turning
machine M .

Note that this proof holds only because L(Gc) allows only constant-size strings in the output.
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CRANE: Expressive Grammar-Constrained LLM Generation

Lemma 3.2. For any Turing machine M with tape alphabet Γ, there exists a constant depth LLM LM with finite vocabulary
Γ ⊆ VM and log-precision that can simulate t(n) steps of M with t(n) autoregressive steps.

Proof. The construction follows from Theorem 2 (Merrill & Sabharwal, 2024).

In this construction, the deterministic Turing machine run captured by a sequence of γ1, . . . , γt(n) capturing the state entered,
tokens written, and directions moved after each token before generating the output M(xxx). Then on any input the xxx the output
LM (xxx) = γ1, · · · , γt(n) ·M(xxx) (assuming M halts within on xxx within t(n) steps where n = |xxx| and t(n) is a polynomial
over n).

Proposition 3.3. For any Turing machine M with tape alphabet Γ, there exists a constant depth LLM LM with finite
vocabulary Γ ⊆ VM and log precision such that for any input xxx with |xxx| = n, LM,Ga(xxx) = rrr ·M(xxx) with r ∈ V ∗

M assuming
M halts on xxx in t(n) steps.

Proof. LM (xxx)) = γ1 · · · γt(n) ·M(xxx). We show that LM (xxx) ∈ L(Ga). Ga → RMG. Since, G is output grammar of M
then M(xxx) ∈ L(G). For all 1 ≤ i ≤ t(n) γi ∈ Γ. Then, γ1 · · · γt(n) ∈ Γ

∗ ⊆ L(RM ).

Then LM (xxx) ∈ L(Ga) then under constrained decoding the output LM (xxx) remains unchanged and LM (xxx) = LM,Ga(xxx) =
rrr ·M(xxx) where rrr = γ1 · · · γt(n).
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CRANE: Expressive Grammar-Constrained LLM Generation

C.1. GSM-Symbolic Examples and Prompt

GSM-Symbolic Problem Solution Examples:
1 Question: A fog bank rolls in from the ocean to cover a city. It takes {t} minutes to cover every {d}

miles of the city. If the city is {y} miles across from oceanfront to the opposite inland edge,
how many minutes will it take for the fog bank to cover the whole city?

2
3 Answer: y//d*t
4
5 Question: {name} makes {drink} using teaspoons of sugar and cups of water in the ratio of {m}:{n}. If

she used a total of {x} teaspoons of sugar and cups of water, calculate the number of
teaspoonfuls of sugar she used.

6
7 Answer: ((m*x)//(m+n))

Listing 1. Problem Solution Examples for GSM-Symbolic

GSM-Symbolic Prompt:
1 You are an expert in solving grade school math tasks. You will be presented with a grade-school math

word problem with symbolic variables and be asked to solve it.
2
3 Before answering you should reason about the problem (using the <reasoning> field in the response

described below). Intermediate symbolic expressions generated during reasoning should be wrapped
in << >>.

4
5 Then, output the symbolic expression wrapped in << >> that answers the question. The expressions must

use numbers as well as the variables defined in the question. You are only allowed to use the
following operations: +, -, /, //, %, (), and int().

6
7 You will always respond in the format described below:
8 Let's think step by step. <reasoning> The final answer is <<symbolic expression>>
9

10 There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After they are done,
there will be {tf} trees. How many trees did the {g} workers plant today?

11
12 Let's think step by step. Initially, there are {t} trees. After planting, there are {tf} trees. The

number of trees planted is <<tf - t>>. The final answer is <<tf - t>>.
13
14 If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars are in the parking

lot?
15
16 Let's think step by step. Initially, there are {c} cars. {nc} more cars arrive, so the total becomes

<<c + nc>>. The final answer is <<c + nc>>.
17
18 {p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces do they have left

in total?
19
20 Let's think step by step. Initially, {p1} had {ch1} {o1}, and {p2} had {ch2} {o1}, making a total of

<<ch1 + ch2>>. After eating {a} {o1}, the remaining total is <<ch1 + ch2 - a>>. The final answer
is <<ch1 + ch2 - a>>.

21
22 {p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?
23
24 Let's think step by step. {p1} started with {l1} {o1}. After giving {g} {o1} to {p2}, {p1} has <<l1 -

g>> {o1} left. The final answer is <<l1 - g>>.
25
26 {p1} has {t} {o1}. For Christmas, {p1} got {tm} {o1} from {p2} and {td} {o1} from {p3}. How many {o1}

does {p1} have now?
27
28 Let's think step by step. {p1} started with {t} {o1}. {p1} received {tm} {o1} from {p2} and {td} {o1}

from {p3}. The total is <<t + tm + td>>. The final answer is <<t + tm + td>>.
29
30 There were {c} {o1} in the server room. {nc} more {o1} were installed each day, from {d1} to {d2}. How

many {o1} are now in the server room?
31
32 Let's think step by step. Initially, there were {c} {o1}. {nc} {o1} were added each day for <<d2 - d1

+ 1>> days, which is <<nc * (d2 - d1 + 1)>>. The total is <<c + nc * (d2 - d1 + 1)>>. The final
answer is <<c + nc * (d2 - d1 + 1)>>.

33
34 {p1} had {gb1} {o1}. On {day1}, {p1} lost {l1} {o1}. On {day2}, {p1} lost {l2} more. How many {o1}

does {p1} have at the end of {day2}?
35
36 Let's think step by step. Initially, {p1} had {gb1} {o1}. After losing {l1} {o1} on {day1}, {p1} had

<<gb1 - l1>>. After losing {l2} {o1} on {day2}, the total is <<gb1 - l1 - l2>>. The final answer
is <<gb1 - l1 - l2>>.

37
38 {p1} has ${m}. {p1} bought {q} {o1} for ${p} each. How much money does {p1} have left?

13
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CRANE: Expressive Grammar-Constrained LLM Generation

39
40 Let's think step by step. Initially, {p1} had ${m}. {p1} spent <<q * p>> on {q} {o1}. The remaining

money is <<m - q * p>>. The final answer is <<m - q * p>>.
41
42 {question}

Listing 2. CoT Prompt Template For GSM-Symbolic Evaluation

1 You are an expert in solving grade school math tasks. You will be presented with a grade-school math
word problem with symbolic variables and be asked to solve it.

2
3 Only output the symbolic expression wrapped in << >> that answers the question. The expression must

use numbers as well as the variables defined in the question. You are only allowed to use the
following operations: +, -, /, //, %, (), and int().

4
5 You will always respond in the format described below:
6 <<symbolic expression>>
7
8 There are {t} trees in the {g}. {g} workers will plant trees in the {g} today. After they are done,

there will be {tf} trees. How many trees did the {g} workers plant today?
9

10 <<tf - t>>
11
12 If there are {c} cars in the parking lot and {nc} more cars arrive, how many cars are in the parking

lot?
13
14 <<c + nc>>
15
16 {p1} had {ch1} {o1} and {p2} had {ch2} {o1}. If they ate {a} {o1}, how many pieces do they have left

in total?
17
18 <<ch1 + ch2 - a>>
19
20 {p1} had {l1} {o1}. {p1} gave {g} {o1} to {p2}. How many {o1} does {p1} have left?
21
22 <<l1 - g>>
23
24 {p1} has {t} {o1}. For Christmas, {p1} got {tm} {o1} from {p2} and {td} {o1} from {p3}. How many {o1}

does {p1} have now?
25
26 <<t + tm + td>>
27
28 There were {c} {o1} in the {loc}. {nc} more {o1} were installed each day, from {d1} to {d2}. How many

{o1} are now in the {loc}?
29
30 <<c + nc * (d2 - d1 + 1)>>
31
32 {p1} had {gb1} {o1}. On {day1}, {p1} lost {l1} {o1}. On {day2}, {p1} lost {l2} more. How many {o1}

does {p1} have at the end of {day2}?
33
34 <<gb1 - l1 - l2>>
35
36 {p1} has ${m}. {p1} bought {q} {o1} for ${p} each. How much money does {p1} have left?
37
38 <<m - q * p>>
39
40 {question}

Listing 3. Prompt Template For GSM-Symbolic Evaluation Without CoT

C.2. FOLIO Examples and Prompt

FOLIO Problem Solution Examples:
1 Question:
2 People in this club who perform in school talent shows often attend and are very engaged with school

events.
3 People in this club either perform in school talent shows often or are inactive and disinterested

community members.
4 People in this club who chaperone high school dances are not students who attend the school.
5 All people in this club who are inactive and disinterested members of their community chaperone high

school dances.
6 All young children and teenagers in this club who wish to further their academic careers and

educational opportunities are students who attend the school.
7 Bonnie is in this club and she either both attends and is very engaged with school events and is a

student who attends the school or is not someone who both attends and is very engaged with school

14
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CRANE: Expressive Grammar-Constrained LLM Generation

events and is not a student who attends the school.
8 Based on the above information, is the following statement true, false, or uncertain? Bonnie performs

in school talent shows often.
9 ###

10
11 FOL Solution:
12 Predicates:
13 InClub(x) ::: x is a member of the club.
14 Perform(x) ::: x performs in school talent shows.
15 Attend(x) ::: x attends school events.
16 Engaged(x) ::: x is very engaged with school events.
17 Inactive(x) ::: x is an inactive and disinterested community member.
18 Chaperone(x) ::: x chaperones high school dances.
19 Student(x) ::: x is a student who attends the school.
20 Wish(x) ::: x wishes to further their academic careers and educational opportunities.
21 Premises:
22 {forall} x (InClub(x) {and} Attend(x) {and} Engaged(x) {implies} Attend(x)) ::: People in this club

who perform in school talent shows often attend and are very engaged with school events.
23 {forall} x (InClub(x) {implies} (Perform(x) {xor} Inactive(x))) ::: People in this club either perform

in school talent shows often or are inactive and disinterested community members.
24 {forall} x (InClub(x) {and} Chaperone(x) {implies} {not}Student(x)) ::: People in this club who

chaperone high school dances are not students who attend the school.
25 {forall} x (InClub(x) {and} Inactive(x) {implies} Chaperone(x)) ::: All people in this club who are

inactive and disinterested members of their community chaperone high school dances.
26 {forall} x (InClub(x) {and} (Young(x) {or} Teenager(x)) {and} Wish(x) {implies} Student(x)) ::: All

young children and teenagers in this club who wish to further their academic careers and
educational opportunities are students who attend the school.

27 {forall} x (InClub(x) {implies} (Attend(x) {and} Engaged(x)) {xor} {not}(Attend(x) {and} Engaged(x)) {
and} {not}Student(x) {xor} Student(x)) ::: Bonnie is in this club and she either both attends and
is very engaged with school events and is a student who attends the school or is not someone who
both attends and is very engaged with school events and is not a student who attends the school.

28 Conclusion:
29 InClub(bonnie) {and} Perform(bonnie) ::: Bonnie performs in school talent shows often.
30
31 Answer: Uncertain

Listing 4. Problem Solution Examples for FOLIO

FOLIO Prompt:
1 Given a problem description and a question. The task is to parse the problem and the question into

first-order logic formulas.
2 The grammar of the first-order logic formula is defined as follows:
3 1) logical conjunction of expr1 and expr2: expr1 {and} expr2
4 2) logical disjunction of expr1 and expr2: expr1 {or} expr2
5 3) logical exclusive disjunction of expr1 and expr2: expr1 {xor} expr2
6 4) logical negation of expr1: {not}expr1
7 5) expr1 implies expr2: expr1 {implies} expr2
8 6) expr1 if and only if expr2: expr1 {iff} expr2
9 7) logical universal quantification: {forall} x

10 8) logical existential quantification: {exists} x. These are the ONLY operations in the grammar.
11 ------
12
13 Answer the question EXACTLY like the examples.
14
15 Problem:
16 All people who regularly drink coffee are dependent on caffeine. People either regularly drink coffee

or joke about being addicted to caffeine. No one who jokes about being addicted to caffeine is
unaware that caffeine is a drug. Rina is either a student and unaware that caffeine is a drug, or
neither a student nor unaware that caffeine is a drug. If Rina is not a person dependent on
caffeine and a student, then Rina is either a person dependent on caffeine and a student, or
neither a person dependent on caffeine nor a student.

17 Question:
18 Based on the above information, is the following statement true, false, or uncertain? Rina is either a

person who jokes about being addicted to caffeine or is unaware that caffeine is a drug.
19 ###
20
21 We take three steps: first, we define the necessary predicates and premises, and finally, we encode

the question `Rina is either a person who jokes about being addicted to caffeine or is unaware
that caffeine is a drug.` in the conclusion. Now, we will write only the logic program, nothing
else.

22 Predicates:
23 Dependent(x) ::: x is a person dependent on caffeine.
24 Drinks(x) ::: x regularly drinks coffee.
25 Jokes(x) ::: x jokes about being addicted to caffeine.
26 Unaware(x) ::: x is unaware that caffeine is a drug.
27 Student(x) ::: x is a student.
28 Premises:
29 {forall} x (Drinks(x) {implies} Dependent(x)) ::: All people who regularly drink coffee are dependent
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on caffeine.
30 {forall} x (Drinks(x) {xor} Jokes(x)) ::: People either regularly drink coffee or joke about being

addicted to caffeine.
31 {forall} x (Jokes(x) {implies} {not}Unaware(x)) ::: No one who jokes about being addicted to caffeine

is unaware that caffeine is a drug.
32 (Student(rina) {and} Unaware(rina)) {xor} {not}(Student(rina) {or} Unaware(rina)) ::: Rina is either a

student and unaware that caffeine is a drug, or neither a student nor unaware that caffeine is a
drug.

33 Conclusion:
34 Jokes(rina) {xor} Unaware(rina) ::: Rina is either a person who jokes about being addicted to caffeine

or is unaware that caffeine is a drug.
35 ------
36
37 Problem:
38 Miroslav Venhoda was a Czech choral conductor who specialized in the performance of Renaissance and

Baroque music. Any choral conductor is a musician. Some musicians love music. Miroslav Venhoda
published a book in 1946 called Method of Studying Gregorian Chant.

39 Question:
40 Based on the above information, is the following statement true, false, or uncertain? Miroslav Venhoda

loved music.
41 ###
42
43 We take three steps: first, we define the necessary predicates and premises, and finally, we encode

the question `Miroslav Venhoda loved music.` in the conclusion. Now, we will write only the logic
program, nothing else.

44 Predicates:
45 Czech(x) ::: x is a Czech person.
46 ChoralConductor(x) ::: x is a choral conductor.
47 Musician(x) ::: x is a musician.
48 Love(x, y) ::: x loves y.
49 Author(x, y) ::: x is the author of y.
50 Book(x) ::: x is a book.
51 Publish(x, y) ::: x is published in year y.
52 Specialize(x, y) ::: x specializes in y.
53 Premises:
54 Czech(miroslav) {and} ChoralConductor(miroslav) {and} Specialize(miroslav, renaissance) {and}

Specialize(miroslav, baroque) ::: Miroslav Venhoda was a Czech choral conductor who specialized
in the performance of Renaissance and Baroque music.

55 {forall} x (ChoralConductor(x) {implies} Musician(x)) ::: Any choral conductor is a musician.
56 {exists} x (Musician(x) {and} Love(x, music)) ::: Some musicians love music.
57 Book(methodOfStudyingGregorianChant) {and} Author(miroslav, methodOfStudyingGregorianChant) {and}

Publish(methodOfStudyingGregorianChant, year1946) ::: Miroslav Venhoda published a book in 1946
called Method of Studying Gregorian Chant.

58 Conclusion:
59 Love(miroslav, music) ::: Miroslav Venhoda loved music.
60 ------
61
62 {question}

Listing 5. Prompt Template Used For FOLIO Evaluation
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C.3. Case Study For GSM-Symbolic
1 Question: {name} hires a {vehicle} from {start_hour} to {end_hour}. He gets {free_hours} hours free.

The first paid hour is ${first_hour_cost} and each hour after that is {multiplier} the cost. How
much did he pay?

2
3 Constrained: <<(int(end_hour - start_hour) - free_hours) * first_hour_cost + free_hours *

first_hour_cost + (int(end_hour - start_hour) - free_hours - 1) * multiplier * first_hour_cost>>
4
5 Unconstrained With CoT: Let's think step by step. The total time hired is from {start_hour} to {

end_hour}, which is <<int((end_hour - start_hour).total_seconds() / 3600)>> hours. Subtracting
the {free_hours} free hours, the paid hours are <<int((end_hour - start_hour).total_seconds() /
3600) - free_hours>>. The final answer is <<first_hour_cost + (int((end_hour - start_hour).
total_seconds() / 3600) - free_hours - 1) * multiplier * first_hour_cost>>.

6
7 CRANE: Let's think step by step. The total time hired is from {start_hour} to {end_hour}, totaling <<

int(end_hour - start_hour)>> hours. Subtracting {free_hours} free hours, the paid hours are <<int
(end_hour - start_hour) - free_hours>>. The first hour costs {first_hour_cost}, and each
additional hour costs {multiplier} times that. The final answer is <<first_hour_cost + (int(
end_hour - start_hour) - free_hours - 1) * multiplier * first_hour_cost>>.

Listing 6. Case Study for GSM-Symbolic

CRANE effectively alternates between constrained and unconstrained generation to produce intermediate expressions, the
final answer, and to maintain the reasoning capabilities of the LLM. In contrast, unconstrained generation with CoT results
in a syntactically incorrect expression, while constrained generation produces a syntactically valid but incorrect expression.

C.4. Sampling Ablation for GSM-Symbolic

In our GSM-Symbolic case study, we use IterGen as the constrained generation baseline and initialize CRANE with IterGen.
Both IterGen and CRANE employ selective rejection sampling to filter tokens that do not satisfy semantic constraints.
For comparison, we also run unconstrained generation using temperature sampling and evaluate its performance against
CRANE. Specifically, for Qwen2.5-1.5B-Instruct and Llama-3.1-8B-Instruct, we generate three samples with unconstrained
generation at a temperature of t = 0.7 and compute pass@1/2/3 metrics.

As shown in Table 4, CRANE with greedy decoding achieves higher accuracy than pass@1/2/3 for unconstrained generation
with Chain-of-Thought (CoT) and temperature sampling on Qwen2.5-1.5B-Instruct. Although, for Llama-3.1-8B-Instruct,
unconstrained generation with CoT and temperature sampling achieves a pass@3 accuracy of 35%—2% higher than
CRANE—it generates 3.5 times as many tokens as CRANE.

C.5. Grammars

C.5.1. GSM-SYMBOLIC GRAMMAR

1 start: space? "<" "<" space? expr space? ">" ">" space?
2
3 expr: expr space? "+" space? term
4 | expr space? "-" space? term
5 | term
6
7 term: term space? "*" space? factor
8 | term space? "/" space? factor
9 | term space? "//" space? factor

10 | term space? "%" space? factor
11 | factor space?
12
13 factor: "-" space? factor
14 | TYPE "(" space? expr space? ")"
15 | primary space?
16
17 primary: NUMBER
18 | VARIABLE
19 | "(" space? expr space? ")"
20
21 TYPE.4: "int"
22
23 space: " "
24
25 %import common.CNAME -> VARIABLE
26 %import common.NUMBER
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Listing 7. GSM-Symbolic Grammar

C.5.2. PROVER9 GRAMMAR

1 start: predicate_section premise_section conclusion_section
2
3 predicate_section: "Predicates:" predicate_definition+
4 premise_section: "Premises:" premise+
5 conclusion_section: "Conclusion:" conclusion+
6
7 predicate_definition: PREDICATE "(" VAR ("," VAR)* ")" COMMENT -> define_predicate
8 premise: quantified_expr COMMENT -> define_premise
9 conclusion: quantified_expr COMMENT -> define_conclusion

10
11 quantified_expr: quantifier VAR "(" expression ")" | expression
12 quantifier: "{forall}" -> forall | "{exists}" -> exists
13
14 expression: bimplication_expr
15
16 ?bimplication_expr: implication_expr ("{iff}" bimplication_expr)? -> iff
17 ?implication_expr: xor_expr ("{implies}" implication_expr)? -> imply
18 ?xor_expr: or_expr ("{xor}" xor_expr)? -> xor
19 ?or_expr: and_expr ("{or}" or_expr)? -> or
20 ?and_expr: neg_expr ("{and}" and_expr)? -> and
21 ?neg_expr: "{not}" quantified_expr -> neg
22 | atom
23
24 ?atom: PREDICATE "(" VAR ("," VAR)* ")" -> predicate
25 | "(" quantified_expr ")"
26
27 // Variable names begin with a lowercase letter
28 VAR.-1: /[a-z][a-zA-Z0-9_]*/ | /[0-9]+/
29
30 // Predicate names begin with a capital letter
31 PREDICATE.-1: /[A-Z][a-zA-Z0-9]*/
32
33 COMMENT: /:::.*\n/
34
35 %import common.WS
36 %ignore WS

Listing 8. Prover9 Grammar
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Table 3. Comparison of CRANE and baselines with various models on GSM-Symbolic based on accuracy, number of tokens, and average
time.

Model k Method Acc. (%) Parse (%) Tokens

Unconstrained w/o CoT 20 98 18.23
Constrained 21 95 34.28

Qwen2.5-1.5B-Instruct 2 Unconstrained CoT 22 90 130.74
CRANE 28 96 140.52

Unconstrained w/o CoT 18 95 18.23
Constrained 18 96 34.28

Qwen2.5-1.5B-Instruct 4 Unconstrained CoT 24 94 130.74
CRANE 30 98 140.52

Unconstrained w/o CoT 21 97 23.34
Constrained 22 97 25.29

Qwen2.5-1.5B-Instruct 8 Unconstrained CoT 26 90 128.97
CRANE 31 100 131.3

Unconstrained w/o CoT 37 96 17.22
Constrained 36 99 18.61

Qwen2.5-Coder-7B-Instruct 2 Unconstrained CoT 32 84 148.87
CRANE 37 96 155.65

Unconstrained w/o CoT 36 96 16.89
Constrained 36 100 18.81

Qwen2.5-Coder-7B-Instruct 4 Unconstrained CoT 35 89 151.29
CRANE 37 97 163.21

Unconstrained w/o CoT 36 94 17.92
Constrained 35 99 25.28

Qwen2.5-Coder-7B-Instruct 8 Unconstrained CoT 37 88 138.38
CRANE 39 94 155.32

Unconstrained w/o CoT 20 66 115.22
Constrained 26 95 26.99

Qwen2.5-Math-7B-Instruct 2 Unconstrained CoT 28 72 190.51
CRANE 32 89 195.65

Unconstrained w/o CoT 22 83 47
Constrained 29 98 27.08

Qwen2.5-Math-7B-Instruct 4 Unconstrained CoT 28 76 184.35
CRANE 37 88 194.77

Unconstrained w/o CoT 27 89 25.7
Constrained 29 99 26.81

Qwen2.5-Math-7B-Instruct 8 Unconstrained CoT 29 82 155.26
CRANE 38 94 158.86

Unconstrained w/o CoT 19 61 157.36
Constrained 23 95 45.58

Llama-3.1-8B-Instruct 2 Unconstrained CoT 29 84 198.64
CRANE 35 94 206.85

Unconstrained w/o CoT 18 68 131.5
Constrained 24 96 37.38

Llama-3.1-8B-Instruct 4 Unconstrained CoT 26 92 172.21
CRANE 30 97 179.95

Unconstrained w/o CoT 21 73 128.38
Constrained 26 98 35.97

Llama-3.1-8B-Instruct 8 Unconstrained CoT 30 95 163.55
CRANE 33 95 170.2219
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Table 4. Comparison of CRANE and greedy and sampling baselines with different models on GSM-Symbolic.
Model Method pass@1/2/3 (%) Parse (%) Tokens

Unconstrained w/o CoT (Greedy) 21 97 23.34
Unconstrained w/o CoT (t = 0.7) 15/19/22 88/96/98 20.19/39.76/60.57
Constrained (Greedy) 22 97 25.29

Qwen2.5-1.5B-Instruct Unconstrained CoT (Greedy) 26 90 128.97
Unconstrained CoT (t = 0.7) 21/25/30 78/91/96 146.22/292.96/444.61
CRANE 31 100 131.3

Unconstrained w/o CoT (Greedy) 21 73 128.38
Unconstrained w/o CoT (t = 0.7) 15/21/25 51/74/84 106.88/232.75/369.86
Constrained (Greedy) 26 98 35.97

Llama-3.1-8B-Instruct Unconstrained CoT (Greedy) 30 95 163.55
Unconstrained CoT (t = 0.7) 24/29/35 89/98/98 196.01/403.68/607.7
CRANE (Greedy) 33 95 170.22

Table 5. Comparison of CRANE and greedy and sampling baselines with different models on FOLIO.
Model Method pass@1/2/3 (%) Compile (%) Tokens

Unconstrained CoT (Greedy) 36.95 70.94 350.64
Unconstrained CoT (t = 0.7) 16.75/28.57/34.98 35.96/55.67/68.47 401.5/800.19/1219.33

Qwen2.5-7B-Instruct Constrained (Greedy) 37.44 87.68 775.62
CRANE (Greedy) 42.36 87.68 726.88

Unconstrained CoT (Greedy) 32.02 57.14 371.52
Unconstrained CoT (t = 0.7) 14.29/22.66/29.06 33.99/46.8/57.64 435.35/877.33/1307.45

Llama-3.1-8B-Instruct Constrained (Greedy) 39.41 86.21 549.75
CRANE (Greedy) 46.31 85.71 449.77
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