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Abstract

We propose RABBit, a Branch-and-Bound-based verifier for verifying relational1

properties defined over Deep Neural Networks, such as robustness against universal2

adversarial perturbations (UAP). Existing SOTA complete L∞-robustness verifiers3

can not reason about dependencies between multiple executions and, as a result, are4

imprecise for relational verification. In contrast, existing SOTA relational verifiers5

only apply a single bounding step and do not utilize any branching strategies6

to refine the obtained bounds, thus producing imprecise results. We develop7

the first scalable Branch-and-Bound-based relational verifier, RABBit, which8

efficiently combines branching over multiple executions with cross-executional9

bound refinement to utilize relational constraints, gaining substantial precision over10

SOTA baselines on a wide range of datasets and networks.11

1 Introduction12

Deep neural networks (DNNs) are now widely used in safety-critical fields like autonomous driving13

and medical diagnosisAmato et al. [2013], where their decisions can have serious consequences.14

However, understanding and ensuring their reliability is difficult due to their complex and opaque15

nature. Despite efforts to find and address vulnerabilities, such as adversarial attacks Goodfellow et al.16

[2014], Madry et al. [2018], Moosavi-Dezfooli et al. [2017], Potdevin et al. [2019], Wu et al. [2023b],17

Sotoudeh and Thakur [2020] and adversarial training techniques Madry et al. [2018], ensuring safety18

remains a challenge. As a result, extensive research is focused on formally verifying the safety19

of DNNs. However, most of the existing L∞ robustness verification techniques can not handle20

relational properties common in practical situations. While significant efforts have been invested21

in verifying the absence of input-specific adversarial examples within the local neighborhood of22

test inputs, recent studies Li et al. [2019a] emphasize that input-specific attacks are impractical23

regardless. Conversely, practical attack scenarios Liu et al. [2023], Li et al. [2019b,a] involve the24

creation of universal adversarial perturbations (UAPs) Moosavi-Dezfooli et al. [2017], which are25

crafted to impact a substantial portion of inputs from the training distribution. RACoon Banerjee26

and Singh [2024] showed that since the same adversarial perturbation is applied to multiple inputs,27

the executions on different perturbed inputs are related, exploiting the relationship between different28

executions significantly improves the precision of the verifier. Despite RACoon’s ability to leverage29

cross-executional dependencies, RACoon remains imprecise as it only applies a single bounding step30

and lacks refinement using branching strategies used in SOTA complete non-relational verifiers.31

Key challenges: For precise relational verification, we need efficient algorithms that can effectively32

combine branching strategies over multiple executions with bounding techniques that can leverage33

cross-executional dependencies. Theoretically, MILP (Mixed Integer Linear Programming) can34

exactly encode DNN executions with piecewise linear activation functions like ReLU over any input35

regions specified by linear inequalities. However, the associated MILP optimization problem is36
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computationally expensive. For instance, encoding k executions of a DNN with nr ReLU activations37

introduces O(nr × k) integer variables in the worst case. As the cost of MILP optimization grows38

exponentially with the number of integer variables, even SOTA off-the-shelf solvers like Gurobi39

Gurobi Optimization, LLC [2018] struggle to verify small DNNs for a relational property over k40

executions within a reasonable time limit. For scalability, SOTA non-relational verifiers like α, β-41

CROWN Wang et al. [2021b] design custom "Branch and Bound" (BaB) solvers using more scalable42

differentiable optimization techniques such as gradient descent. However, these verifiers ignore43

dependencies between multiple executions, resulting in imprecise relational verification. Conversely,44

the SOTA relational verifier RACoon uses parametric linear relaxation for each activation to avoid45

integer variables and employs gradient descent to learn parameters that leverage cross-executional46

dependencies for verification. This method, however, introduces imprecision due to the replacement of47

non-linear activations with parametric linear approximations. Therefore, precise relational verification48

requires scalable algorithms that can: a) utilize cross-executional dependencies, b) effectively reduce49

imprecision from parametric linear relaxations, and c) scale to the large DNNs used in this paper.50

Our contributions: We advance the state-of-the-art in relational DNN verification by:51

• Efficiently combining branching strategies over multiple DNN executions with cross-executional52

bounding method that utilizes dependencies between DNN’s outputs from different executions53

while reducing imprecision resulting from parametric linear relaxations.54

• Developing two "branch and bound" algorithms, each with its own advantages - a) strong bounding:55

applies cross-execution bounding at each step, branching over all executions. This method provides56

tighter bounds than RACoon (cross-executional bound refinement without branching) and α, β-57

CROWN (branching without cross-executional bound refinement), b) strong branching: applies58

cross-execution bounding only at the start to derive fixed linear approximations for each execution.59

These approximations are then used to branch independently over each execution, exploring more60

branches per execution.61

• Combining strong bounding and branching results into an efficiently optimizable MILP instance62

that leverages the benefits of both techniques, outperforming each individually.63

• Performing extensive experiments on popular datasets and various DNNs (standard and robustly64

trained) to showcase the precision improvement over the current SOTA baselines.65

2 Related Works66

Non-relational DNN verifiers: DNN verifiers are broadly categorized into three main categories -67

(i) sound but incomplete verifiers which may not always prove property even if it holds Gehr et al.68

[2018], Singh et al. [2018, 2019b,a], Zhang et al. [2018], Xu et al. [2020, 2021], (ii) complete verifiers69

that can always prove the property if it holds Wang et al. [2018], Gehr et al. [2018], Bunel et al.70

[2020a,c], Bak et al. [2020], Ehlers [2017], Ferrari et al. [2022], Fromherz et al. [2021], Wang et al.71

[2021a], Palma et al. [2021], Anderson et al. [2020], Zhang et al. [2022a] and (iii) verifiers with72

probabilistic guarantees Cohen et al. [2019], Li et al. [2022].73

Relational DNN verifier: DNN relational verifiers fall into two main categories: (i) verifiers74

for properties such as UAP and fairness, defined over multiple executions of the same DNN Zeng75

et al. [2023], Khedr and Shoukry [2023], Banerjee and Singh [2024], and (ii) verifiers for properties76

like local DNN equivalence, defined over multiple executions of different DNNs on the same input77

Paulsen et al. [2020, 2021]. For relational properties defined over multiple executions of the same78

DNN the existing verifiers Khedr and Shoukry [2023] reduce the verification problem into L∞79

robustness problem by constructing "product DNN" with multiple copies of the same DNN. However,80

the relational verifier in Khedr and Shoukry [2023] treats all k executions of the DNN as independent81

and loses precision as a result of this. Zeng et al. [2023] (referred to as I/O formulation) although82

tracks the relationship between inputs used in multiple executions at the input layer, does not track83

the relationship between the inputs fed to the subsequent hidden layers and can only achieve a84

limited improvement over the baseline verifiers that treat all executions independently. The SOTA85

relational verifier RACoon Banerjee and Singh [2024] improves relational verification’s precision86

by leveraging cross-executional dependencies at all layers and introducing a new bounding strategy87

called cross-executional bound refinement, as detailed in Section 3. There exist, probabilistic verifiers,88

Xie et al. [2021], Zhang et al. [2022b] based on randomized smoothing Cohen et al. [2019] for89

verifying relational properties. However, these works can only give probabilistic guarantees on90

smoothed models which have high inference costs. Similar to Zeng et al. [2023], Banerjee and Singh91

[2024], in this work, we focus on deterministic relational verifiers for DNNs with ReLU activation.92
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However, RABBit can be extended to activations like Sigmoid, Tanh, etc. with branching methods93

from Shi et al. [2024] and parametric bounds from Wu et al. [2023a].94

3 Preliminaries95

We provide the necessary background on "branch and bound" (BaB) based non-relational DNN96

verification, as well as DNN safety properties that can be encoded as relational properties.97

Non-relational DNN verification: For a single execution, non-relational DNN verification involves98

proving that the network outputs y = N(x+ δδδ) for all perturbations x+ δδδ of an input x specified99

by ϕ, satisfy a logical specification ψ. Common safety properties like L∞ robustness encodes the100

output specification (ψ) as linear inequality (or conjunction of linear inequalities) over DNN output101

y ∈ Rnl . e.g. ψ(y) = (cTy ≥ 0) where c ∈ Rnl . In general, even for piece-wise linear activation102

functions and ϕ specified with linear inequalities complete DNN verification that always either proves103

the property or finds a counter-example is NP-hard. Instead, given a DNN N : Rn0 → Rnl and a104

property specified by (ϕ, ψ), scalable sound but incomplete verifiers compute a linear approximation105

specified by L ∈ Rn0 , b ∈ R such that for any input x satisfying ϕ the following condition holds106

LTx + b ≤ cTN(x). For all x satisfying ϕ, the verifier then proves LTx + b ≥ 0, consequently107

showing cTN(x) ≥ 0. Although LTx + b always computes a valid lower bound on cTN(x), it108

can be imprecise. Therefore, for piece-wise linear activations, SOTA non-relational verifiers apply109

a BaB method to improve precision. Each branching step decomposes the problem into multiple110

subproblems, while the bounding method computes a valid lower bound for each subproblem.111

Branching for piecewise linear activation: The non-relational verifier computes L by replacing112

non-linear activations with linear relaxations, which introduces imprecision. However, for piecewise113

linear activations like ReLU, it is possible to consider each linear piece separately as different114

subproblems, avoiding the need for imprecise linear relaxations. For instance, for y = ReLU(x),115

branching on x and considering the cases x ≤ 0 and x ≥ 0 allows decomposing ReLU(x) into116

two distinct linear pieces. Still in the worst case decomposing all ReLU nodes in a DNN results117

in exponential blowup making it practically infeasible. Therefore, SOTA non-relation verifiers like118

α, β-CROWN Wang et al. [2021b] greedily pick a small subset of ReLU nodes for branching while119

using linear relaxations for the rest. We explain the bounding step used for each subproblem below.120

Bounding with parameter refinement: Obtaining sound linear relaxations of activations σ like121

ReLU, which are not used for branching, involves computing linear lower bounds σl(x) and upper122

bound σu(x) that contain all possible outputs of σ w.r.t all inputs x satisfying ϕ. That is, for all123

possible input values x of σ, σl(x) ≤ σ(x) ≤ σu(x) holds. SOTA non-relational verifiers, such124

as α, β-CROWN, improve precision by using parametric linear relaxations instead of static linear125

bounds and refine the parameters to facilitate verification of the property (ϕ, ψ). For example,126

for ReLU(x), the parametric lower bound is ReLU(x) ≥ α × x with α ∈ [0, 1]. Since α × x127

remains a valid lower for any α ∈ [0, 1], this allows optimizing α while ensuring the bound remains128

mathematically correct. Each branched ReLU say y = ReLU(x), introduces two subproblems each129

with one additional constraint x ≤ 0 (or, x ≥ 0) where ReLU behaves as a linear function i.e. y = 0130

(or, y = x) respectively. To obtain the lower bound of LTx + b over inputs satisfying ϕ with the131

additional branching constraints α, β-CROWN convert the constrained optimization problem into an132

unconstrained one by looking at the Lagrangian dual. The dual replaces each branching constraint by133

augmenting the minimization objective LTx+ b with additional terms i.e. LTx+ b+β+x for x ≤ 0134

or LTx + b + β−x for x ≥ 0 where β+ ≥ 0 and β− ≤ 0. Overall, at high level, α, β-CROWN135

computes parametric linear approximations L(ααα,βββ)Tx+ b(ααα,βββ) and refine the parameters α, β to136

facilitate verification of (ϕ, ψ).137

DNN relational properties: For a DNN N : Rn0 → Rnl , relational properties defined over k execu-138

tions ofN are specified by the tuple (Φ,Ψ) where the input specification Φ : Rn0×k → {true, false}139

encodes the input region Φt ⊆ Rn0×k encompassing all potential inputs corresponding to each of140

the k executions of N and the output specification Ψ : Rnl×k → {true, false} specifies the safety141

property we expect the outputs of all k executions of N to satisfy. Formally, in DNN relational142

verification, given N , an input specification Φ and an output specification Ψ we require to prove143

whether ∀x∗
1, . . . ,x

∗
k ∈ Rn0 .Φ(x∗

1, . . . ,x
∗
k) =⇒ Ψ(N(x∗

1), . . . N(x∗
k)) or provide a counterex-144

ample otherwise. Here, x∗
1, . . . ,x

∗
k are the inputs to the k executions of N and N(x∗

1), . . . , N(x∗
k)145

are the corresponding outputs. Commonly, the input region ϕit for the i-th execution is a L∞146

region around a fixed point xi ∈ Rn0 defined as ϕit = {x∗
i ∈ Rn0 | ∥x∗

i − xi∥∞ ≤ ϵ} while147

the corresponding output specification ψi(N(x∗
i )) =

∧m
j=1(ci,j

TN(x∗
i ) ≥ 0). Subsequently,148
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Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1(x

∗
i ∈ ϕit)

∧
Φδ(x∗

1, . . . ,x
∗
k) where Φδ(x∗

1, . . . ,x
∗
k) encodes the relation-149

ship between the inputs used in different execution and Ψ(N(x∗
1), . . . , N(x∗

k)) =
∧k

i=1 ψ
i(N(x∗

i )).150

Next, we describe relational properties that can encode interesting DNN safety configurations.151

UAP verification: In a UAP attack, given a DNN N , the adversary aims to find an adversarial152

perturbation with a bounded L∞ norm that maximizes the rate at which N misclassifies when the153

same adversarial perturbation is applied to all inputs from the distribution. The UAP verification154

problem aims to find the worst-case accuracy of N against the UAP adversary. We refer to this155

worst-case accuracy as UAP accuracy in the rest of the paper. As shown by Theorem 2 in Zeng156

et al. [2023], it is possible to stastically estimate the UAP accuracy of N with respect to the input157

distribution if one can determine the UAP accuracy of N on k randomly selected images. We focus158

on the k-UAP verification problem for the rest of the paper as improving the precision of k-UAP159

verification directly improves the UAP accuracy on the input distribution Banerjee and Singh [2024].160

The k-UAP verification problem is fundementally different from local L∞ robustness verification161

since the same adversarial perturbation is applied across the set of inputs. Thus, improving precision162

for the UAP verification problem requires a relational verifier that can exploit dependencies between163

the perturbed inputs. We provide the Φ and Ψ of the UAP verification problem in Appendix A.1.164

4 Cross-executional BaB165

The key distinction between relational and non-relational DNN verification is the dependency between166

different DNN executions, which necessitates that any precise relational verifier utilizes these cross-167

execution dependencies. For instance, for k-UAP problem with two images x1, x2 consider the168

scenario where both x1 and x2 have valid adversarial perturbations δ1 and δ2 but no common169

perturbation say δ that works for both x1 and x2. In this case, any non-relational verification170

that does not account for cross-execution dependencies can never prove the absence of a common171

perturbation given that both x1, x2 have valid adversarial perturbations highlight the importance of172

utilizing cross-executional dependencies. The SOTA relational verifier RACoon Banerjee and Singh173

[2024] leverages cross-execution dependencies to jointly optimize the ααα parameters from different174

executions, significantly improving the precision of relational verification. However, RACoon only175

uses parametric linear relaxations for non-linear activations and lacks a branching step, resulting in176

reduced precision, as confirmed by our experimental results in Section 6. To address this, we propose177

two separate BaB algorithms, each with its benefits, described in Sections 4.1 and 4.2. Finally, we178

combine the results to formulate an efficiently optimizable MILP instance in Section 5179

4.1 Strong Bounding180

Before going into the details, we briefly review the cross-executional bound refinement proposed in181

RACoon. For k-UAP, given any subset S of the k executions, RACoon can verify the absence of any182

common perturbation that works for all executions in S with cross-executional bound refinement. Let183

for all i ∈ S, (Li(αααi),bi(αααi)) denote the parametric linear approximations corresponding to the i-th184

execution. Then the optimal value t∗ = maxαααi,λi
−ϵ×∥

∑
i∈S λi×Li(αααi)∥1+

∑
i∈S λi×ai(αααi) ≥ 0185

proves absence of common perturbation δδδ for S. Here, ϵ is the perturbation bound i.e. ∥δδδ∥∞ ≤ ϵ,186

ai(αααi) = bi(αααi)+Li(αααi)
Txi and λi ∈ [0, 1] with

∑
i∈S λi = 1 are the cross-executional parameters187

that relate linear approximations from different execution enabling joint optimization over αααis. Next,188

we detail the first BaB method - strong bounding that combines cross-executional bounding with189

branching methods to verify the absence of common perturbation for any subset of n = |S| executions.190

Branching and bounding: For n executions, we construct a "product DNN" by duplicating the191

DNN n times, one for each execution. Formally, product DNN is a function Nn : Rn0×n → Rnl×n192

with Nn(x1, . . . ,xn) = [N(x1), . . . , N(xn)]
T . At each branching step, we greedily select a subset193

of unbranched ReLU activations from the product DNN and branch on them, while using parametric194

linear relaxations for the rest. We adapt existing greedy branching heuristics, such as BaBSR Bunel195

et al. [2020b], for selecting the candidate ReLU activations. The heuristic computes a score for each196

unbranched ReLU activation in the product DNN, and we branch on the activations with the highest197

scores. Next, we detail the bounding method applied to each subproblem resulting from branching.198

Since the number of subproblems can be large, the bounding method needs to be fast yet capable199

of leveraging both branching constraints and cross-executional dependencies. However, the cross-200

executional bound refinement from RACoon can not handle branching constraints, while the bounding201

step from α, β-CROWN does not utilize dependencies across executions. Hence, we develop a three-202

step algorithm for obtaining the optimal value t∗ with fast gradient descent-based methods. First,203
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we replace these branching constraints by introducing dual variables βββ , resulting in new parametric204

linear approximations (Li(αααi,βββi), bi(αααi,βββi)) for each subproblem for all i ∈ S. Then for each205

subproblem, we introduce additional variables λi for each execution with constraints λi ∈ [0, 1]206

and
∑

i∈S λi = 1. These λis relate linear approximations from different executions capturing207

cross-executional dependencies. This reduces finding t∗ for each subproblem to the following208

optimization problem t∗ = maxαααi,βββi,λi
−ϵ × ∥

∑
i∈S λi × Li(αααi,βββi)∥1 +

∑
i∈S λi × ai(αααi,βββi).209

Here, ai(αααi,βββi) = bi(αααi,βββi) + Li(αααi,βββi)
Txi. Finally, we apply projected gradient ascent to refine210

parameters (αααi,βββi, λi). The detailed derivation of the bounding step and the proof of correctness is211

in Appendix B. Precision gains of strong bounding over the baselines are in Section 6.2. Suppose,212

F(S) denotes the set of subproblems then Theorem 4.1 proves the absence of common perturbation213

for the subset S.214

Theorem 4.1. If minF(S) maxαααi,βββi,λi
−ϵ×∥

∑
i∈S λi×Li(αααi,βββi)∥1 +

∑
i∈S λi× ai(αααi,βββi) ≥ 0215

then executions in S do not have common perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ.216

Proof: The detailed proof in the Appendix B.217

While strong bounding effectively combines cross-executional refinement with branching, it has the218

following drawbacks that led to the development of the 2nd BaB method. First, strong bounding219

branches over all executions simultaneously, which limits the number of branches explored per220

execution within a fixed timeout compared to branching on individual executions. For instance, if221

strong bounding solves m subproblems for n executions, then assuming each execution branched222

uniformly, each execution gets only m
1
n subproblems. In contrast, given the same timeout, branching223

individually allows exploration m
n subproblem per execution. Second, strong bounding only proves224

the absence of common perturbation, a relaxation of the k-UAP problem. To mitigate this, RACoon225

uses parameter refinement to obtain linear approximations and formulate a MILP, providing a more226

precise bound on k-UAP accuracy. However, for strong bounding, as the number of subproblems227

increases and each subproblem has a different linear approximation, formulating a MILP with each228

linear approximation is practically infeasible. Restricting the number of linear approximations can229

help accommodate MILP formulation by compromising on the method’s strong bounding step.230

4.2 Strong Branching231

Unlike strong bounding, strong branching explores more branches by branching on each execution232

independently. Additionally, for each execution, we aim to keep the number of linear approximations233

small post-branching, ensuring the MILP instance using these approximations remains easy to234

optimize. To limit the number of linear approximations for each execution i, we fix a set of linear235

coefficients {L1, . . . ,Lm} called "target coefficients" and for each j ∈ [m], Lj ∈ Rn0 compute236

valid lower bound b∗j of the following optimization problem minδδδ N(xi + δδδ) − LT
j (xi + δδδ) with237

∥δδδ∥∞ ≤ ϵ using BaB. In this case, for all δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ the refined bias b∗j and Lj remain238

a valid lower bound of N(xi + δδδ) i.e. LT
j (xi + δδδ) + b∗j ≤ N(xi + δδδ). Moreover, since we only239

refine the bias, the number of linear approximations remains the same as at the start of BaB, even240

after branching. Next, we describe how we utilize cross-execution dependencies while branching on241

each execution independently.242

Selecting targets: We select target coefficients for each execution to facilitate relational verification.243

To select target coefficients, we greedily pick subsets of executions and run cross-executional244

refinement from RACoon without branching on each subset of executions. We describe the greedy245

selection strategy in Section 5. For each set of executions, we add the linear approximations obtained246

by cross-executional refinement to the corresponding executions’ target sets. Cross-executional247

refinement ensures for each execution set the parameters are tailored for the relational verification.248

Bounding and branching: Given a target coefficient Lt ∈ Rn0 , since finding the exact solution of249

minδδδ N(xi + δδδ)− LT
t (xi + δδδ) is computationally expensive, strong branching aims to obtain a tight250

mathematically correct lower bound on the differenceN(xi+δδδ)−LT
t (xi+δδδ). For any subproblem, let251

(L(ααα,βββ), b(ααα,βββ)) denote the parametric linear approximation. Then for this particular subproblem,252

for all ααα,βββ , L(ααα,βββ)T (xi + δδδ) + b(ααα,βββ) ≤ N(xi + δδδ) and subsequently:253

max
ααα,βββ

min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
T (xi + δδδ) + b(ααα,βββ) ≤ min

∥δδδ∥∞≤ϵ
N(xi + δδδ)− LT

t (xi + δδδ) (1)

The optimal solution of the max-min problem in Eq. 1 provides a mathematically correct lower bound254

of minδδδ N(xi + δδδ) − LT
t (xi + δδδ) for each subproblem. However, it is hard to solve a max-min255

5



problem with scalable differentiable optimization techniques like gradient descent typically used for256

large DNNs considered in this paper. Instead, we compute a closed form of the inner minimization257

problem reducing the optimization instance to a more tractable maximization problem (Theorem 4.2).258

259
Theorem 4.2. For any ααα,βββ , if L(ααα,βββ) ∈ Rn0 and b(ααα,βββ) ∈ R then min∥δδδ∥∞≤ϵ(L(ααα,βββ) −260

Lt)
T (x+ δδδ) + b(ααα,βββ) = −ϵ× ∥L(ααα,βββ)− Lt∥1 + (L(ααα,βββ)− Lt)

Tx+ b(ααα,βββ).261

Proof: The proof is in Appendix C.262

We apply a projected gradient ascent to optimize the maximization with the closed form obtained263

above (Appendix C.1). The proof of the correctness of the bounding method is in Appendix C.264

Note the proof of correctness does not necessitate the optimizer to find the global optimum. This265

is important since gradient ascent may not always converge to the global optimum. Since strong266

branching branch on each execution independently we reuse the branching strategy of α, β-CROWN.267

268

5 RABBit269

In this section, we detail the algorithm (Alog. 1) that combines the results from strong bounding and270

strong branching to formulate the MILP. Running strong bounding on all 2k − 1 non-empty subsets271

of k executions is impractical. Therefore, we use a greedy approach to select subsets of executions272

for strong bounding. Similarly, for strong branching, we greedily select the target linear coefficients.273

First, we describe both greedy strategies before moving on to the MILP formulation.274

Elimination of individually verified executions: RABBit maintains a list of unverified indices and275

eliminates any executions that can be verified individually and does not consider them for subsequent276

steps (lines 3, 8, and 13 in Algo. 1). For instance, for k-UAP verification, we do not need to consider277

those executions that are proved to have no adversarial perturbation δδδ such that ∥δδδ∥∞ ≤ ϵ. Pruning278

individually verified executions improves the runtime without any compromise on the precision of279

the relational verifier (see Theorem B.1 Banerjee and Singh [2024]).280

Greedy target coefficient selection: RABBit first runs RACoon which in turn executes an incom-281

plete non-relation verifier α-CROWN Xu et al. [2021] eliminating the verified executions (line 8282

in Algo. 1). Subsequently, for target selection, RABBit greedily picks the first kt (hyperparameter)283

executions based on si the lower bound on N(xi + δδδ) as computed by α-CROWN, prioritizing284

executions with higher si (line 9). Intuitively, for unverified executions, si measures the maximum285

violation of the output specification ψi(N(xi + δδδ)) and thus leads to the natural choice of picking286

executions with smaller violations. For each selected execution i, we choose up to m target coeffi-287

cients by iterating over all subsets i ∈ S considered by RACoon, and selecting linear approximations288

corresponding to the top m subsets.The cross-executional lower bound t∗ from RACoon decides the289

priority of each subset S. Subsets S with higher t∗ indicate smaller violations and are more likely to290

be verified for the absence of a common perturbation, making them suitable for target selection.291

Selection of subsets of executions for strong bounding: Thereafter, until timeout ζ, we run strong292

bounding on subsets of executions from individually unverified executions I . For each subset S ⊆ I ,293

the cross-executional bound obtained by RACoon on S decides its priority. However, considering all294

non-empty subsets of I can be expensive. Instead, similar to strong branching, we first pick top-kt295

executions (I2) from I (Algo 1 line 19). We sort all non-empty subsets S ⊆ I2 based on their priority296

and, in each iteration, run strong bounding on the highest-priority subset that has not been scheduled297

yet (Algo 1 line 22). Given a large timeout, RABBit would eventually select all subsets from I2.298

MILP Formulation: The MILP formulation uses both the refined biases from strong branching (line299

11) and the subsets S of executions verified for the absence of common perturbation from strong300

bounding (line 22) to compute final verified UAP accuracy. RABBit MILP formulation involves301

three steps. First, we deduce linear constraints between the input and output of N for each unverified302

execution using linear approximations of N with refined bias obtained by strong branching. Secondly,303

we add constraints for each subset S verified for the absence of common perturbation with strong304

bounding. Then, similar to the current SOTA baseline Banerjee and Singh [2024], we encode the305

output specification Ψ as a MILP objective, introducing only O(k) integer variables. Finally, we use306

an off-the-shelf MILP solver Gurobi Optimization, LLC [2018] to optimize the MILP.307

Ψ encoding: First, we show the MILP objective M that encodes Ψ. We introduce binary variables308

zi ∈ {0, 1} for each individually unverified execution in I where for any perturbation δδδ ∈ Rn0 and309

∥δδδ∥∞ ≤ ϵ, zi = 1 implies ψi(N(xi + δδδ)) = True. Then the finding the worst case UAP accuracy is310

equivalent to the following M = 1
k ×

(
(k − |I|) +min∥δ∥∞ϵ

∑
i∈I zi

)
.311
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Algorithm 1 RABBit

1: Input: N , (Φ,Ψ), k, kt, timeout ζ
2: Output: M.
3: I ← {} ▷ Unverified indices
4: L ← {} ▷ Linear approximations
5: C ← {} ▷ Cross-verified executions
6: s← {} ▷ Lower bounds from α-Crown
7: M← 0 ▷ Initialize verified UAP accuracy
8: (I,L, C, s)← RACoon(N , (Φ,Ψ), k)
9: I1 ← top-kt indices from I based on s

10: for i ∈ I1 do
11: b∗i ← StrongBranching(ϕi, ψi,L[i])
12: if Verified(ϕi, ψi,L[i], b∗i ) then
13: I ← I \ {i}
14: end if
15: UpdateBias(L[i], b∗i )

16: M←MILP(L,Φ,Ψ, k, I , C)
17: M← max (M(Φ,Ψ),Opt(M))
18: end for
19: I2 ← top-kt indices from I based on s
20: while time() < ζ do
21: S ← Greedily select subset of I2
22: tS ← StrongBounding(S,Φ,Ψ)
23: if tS ≥ 0 then
24: C ← Append(C, S)
25: M←MILP(L,Φ,Ψ, k, I , C)
26: M← max (M,Opt(M))
27: end if
28: end while
29: return M

Constraints encoding: We add constraints from strong bounding, strong branching, and from312

the linear approximation obtained from the call to RACoon (Algo. 1 line 8). Suppose for any313

subset S ⊆ I , strong bounding verifies the absence of common perturbation. Then for all δδδ ∈ Rn0314

and ∥δδδ∥∞ ≤ ϵ at least one of the executions from S will always satisfy the corresponding output315

specification. Hence, for every such S we add the constraint:
∑

i∈S zi ≥ 1. Now, let for any316

i ∈ I , {(L1
i , b

1
i ), . . . , (L

m
i , b

m
i )} denote set of linear approximation with bmi either coming from317

RACoon or from strong branching. Then we add the following constraints zi ≥ z′i, z
′
i = (oi ≥ 0),318

oi ≥ LjT
i (xi + δδδ) + bji where oi ∈ R, z′i are newly introduced real and integer variables respectively.319

Limitations: Although RABBit outperforms SOTA verifiers in relational verification, like all320

deterministic verifiers, whether relational or non-relational (including ours), do not scale to deep321

neural networks (DNNs) trained on very large datasets such as ImageNet. RABBit is sound but322

incomplete, meaning it may not be able to prove certain relational properties even if they are true.323

Note that all complete non-relational verifiers are also incomplete for relational properties since they324

do not track any dependencies between executions.325

6 Experimental Evaluation326

We evaluate the effectiveness of RABBit on multiple relational properties, DNNs, and datasets. In our327

evaluation, we compare RABBit against SOTA baselines, including non-relational verifiers CROWN328

Zhang et al. [2018], α-CROWN Xu et al. [2021], α, β-CROWN Wang et al. [2021b], as well as329

relational verifiers I/O Formulation Zeng et al. [2023] and RACoon. Additionally, we show that:330

a) given the same time, RABBit always outperforms the SOTA BaB-based non-relational verifier331

α, β-CROWN; b) strong bounding computes a tighter bound on t∗ than α, β-CROWN; and c) we332

provide an ablation study on ϵ, k, and the hyperparameter kt used by RABBit.333

6.1 Experiment Setup334

Networks. We use standard convolutional and residual architectures, such as ConvSmall and ConvBig,335

which are used to evaluate both SOTA relational Wang et al. [2021b] and non-relational verifiers336

Banerjee and Singh [2024] (see Table 1). We provide the details of the DNN architectures in the337

Appendix D.1. We use networks trained using both standard training methods and robust training338

strategies, such as DiffAI Mirman et al. [2018], SABR Mueller et al. [2023], and CITRUS Xu and339

Singh [2024]. Our experiments utilize publicly available pre-trained DNNs sourced from the CROWN340

repository Zhang et al. [2020], α, β-CROWN repository Wang et al. [2021b], and ERAN repository341

Singh et al. [2019b]. The clean accuracies of these networks are reported in Appendix D.2.342

Implementation details and hyperparameters. We implemented our method in Python with343

Pytorch V1.11 on top of SOTA complete non-relational verifier α, β-CROWN Wang et al. [2021b].344

We used Gurobi V11.0 as the off-the-shelf MILP solver. For both strong bounding and strong345

branching, we use Adam Kingma and Ba [2014] for parameter learning and run it for 20 iterations346
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Table 1: RABBit Efficacy Analysis for Worst-Case UAP Accuracy

Dataset Network Training Perturbation CROWN α−CROWN α, β−CROWN I/O RACoon Strong Strong RABBit
Structure Method Bound (ϵ) Bounding Branching

ConvSmall Standard 1/255 44.8 45.4 59.8 45.4 45.4 60.0 (+0.2) 60.6 (+0.8) 62.4 (+2.6)
ConvSmall DiffAI 5/255 44.4 49.6 53.6 50.4 51.6 59.0 (+5.4) 59.0 (+5.4) 59.8 (+6.2)

CIFAR10 ConvSmall SABR 2/255 75.2 75.8 78.4 76.8 78.2 83.0 (+4.6) 83.8 (+5.4) 84.0 (+5.6)
ConvSmall CITRUS 2/255 74.8 76.0 79.0 77.0 78.8 82.8 (+3.8) 83.2 (+4.2) 83.6 (+4.6)
ConvBig DiffAI 2/255 46.6 51.8 57.2 53.2 54.8 59.8 (+2.6) 60.0 (+2.8) 60.4 (+3.2)

ResNet-2B Standard 1/255 52.6 52.6 56.0 53.6 55.0 56.2 (+0.6) 56.2 (+0.6) 57.0 (+1.0)

ConvSmall Standard 0.10 7.8 9.8 32.8 16.0 18.0 35.4 (+2.6) 34.8 (+2.0) 36.2 (+3.4)
ConvSmall DiffAI 0.13 51.8 57.0 72.8 57.2 58.4 74.6 (+1.8) 74.2 (+1.4) 75.2 (+2.4)

MNIST ConvSmall SABR 0.15 27.0 38.0 50.4 42.2 45.8 51.4 (+0.8) 51.4 (+0.8) 52.2 (+1.8)
ConvSmall CITRUS 0.15 28.8 41.6 59.4 41.6 44.6 60.6 (+1.2) 60.0 (+0.6) 61.6 (+2.2)
ConvBig DiffAI 0.2 81.4 86.6 89.6 86.6 87.0 90.6 (+1.0) 90.6 (+1.0) 91.4 (+1.8)

on each subproblem. We set the value of kt = 10 for CIFAR-10 and kt = 20 for MNIST networks347

respectively. We use a single NVIDIA A100-PCI GPU with 40 GB RAM for bound refinement348

and an Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz with 64 GB RAM for MILP optimization.349

For any relational property with k executions, we give an overall timeout of k minutes (averaging 1350

minute/execution) to RABBit and all baselines. Each MILP instance gets a timeout of 5 minutes.351

6.2 Experimental Results352

Effectiveness of RABBit: Table 1 compares the results of RABBit to all baselines across different353

datasets (column 1) and DNN architectures (column 2) trained with various methods (column 3), with354

ϵ values defining the L∞ bound of δδδ in column 4. For each DNN and ϵ, we run RABBit and all the355

baselines on 10 relational properties each defined with k = 50 randomly selected inputs, and report356

the worst-case UAP accuracy averaged over the 10 properties. Note that for each DNN, we exclude357

inputs misclassified by the DNN. We compare the performance of RABBit against SOTA relational358

and complete non-relational verifiers as well as against strong bounding and strong branching.359

The results in Table 1 demonstrate that strong bounding, strong branching, and RABBit all outperform360

the existing SOTA verifiers on all DNNs and ϵ. Notably, RABBit gains up to +6.2% and up to +3.4%361

improvement in the worst-case UAP accuracy (averaged over 10 runs) for CIFAR10 and MNIST362

DNNs, respectively. RABBit also efficiently scales to the largest verifiable DNN architectures such363

as ResNet and ConvBig, conferring up to +3.2% improvement in worst-case UAP accuracy. In some364

cases, strong bounding outperforms strong branching, while in others, strong branching outperforms365

strong bounding, highlighting the importance of both methods. RABBit combines the strengths of366

both strong branching and strong bounding, producing the best results overall.

(a) DiffAI (CIFAR10) (b) SABR (CIFAR10) (c) CITRUS (CIFAR10)

Figure 1: Average Worst Case k-UAP accuracy vs Time for ConvSmall CIFAR10 DNNs.
367

Time vs UAP Accuracy Analysis: Fig. 1 shows timewise the worst-case UAP accuracy (averaged368

over 10 runs) for different ConvSmall CIFAR10 networks with k = 50 on ϵ values from Table 1. Note369

that RABBit invokes RACoon, which in turn calls α-CROWN and eliminates verified executions370

(Line 7 in Algorithm 1). Hence, for a fair comparison, we also run α-CROWN first for α, β-CROWN371

and then run α, β-CROWN only on the unverified indices. For all DNNs, RABBit consistently372

outperforms the SOTA BaB-based non-relational verifier α, β-CROWN at all timestamps. This373

confirms that the improved precision shown in Table 1 is not dependent on the specific timeout value.374

Evaluating Bound Improvement: In Fig 2, we present a timewise analysis of the improvement in375

t∗ with strong bounding over α, β-CROWN and RACoon. For this experiment, we use DiffAI and376

CITRUS ConvSmall networks with epsilon values from Table 1. For each network and ϵ, we select377

30 executions at random and compute the percentage improvement in t∗ with strong bounding over378

RACoon and α, β-CROWN.We also report the average improvement and 95% confidence intervals379

for all cases in Table 4 in Appendix E. The results demonstrate that the t∗ with strong bounding is380
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(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10) (c) DiffAI (MNIST) (d) CITRUS (MNIST)
Figure 2: Timewise Analysis of Average % Improvement in t∗ with Strong Bounding

significantly tighter compared to the bounds from the SOTA verifiers α, β-CROWN and RACoon at381

all timestamps. Furthermore, strong bounding improves t∗ on average by up to 108.7% for CIFAR10382

networks and 57.7% for MNIST networks. These results highlight the importance of leveraging383

dependencies across executions during both branching and bounding to improve precision.384

Different ϵ and k values: Fig. 3 shows the results of RACoon, α, β-CROWN, and RABBit for385

k-UAP verification of CIFAR10 ConvSmall DNNs for 5 different ϵ values and k = 50. We also386

report ϵ ablation results for MNIST DNNs in Appendix G.1.RABBit outperforms RACoon and387

α, β-CROWN for all evaluated ϵ values, notably improving the worst case k-UAP accuracy by up to388

6.2%. Similarly, we analyze the performance of RACoon, α, β-CROWN, and RABBit for k-UAP389

verification of CIFAR10 ConvSmall DNNs with different k values. Results for MNIST DNNs are390

presented in Appendix G.2. As presented in Fig. 4, for all k values, RABBit is more precise than both391

baselines. Expectedly, the worst-case k-UAP accuracy for relational verifiers is higher with larger k392

values as it is easier to prove the absence of a common perturbation with larger k.393

(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10)

Figure 3: Average Worst Case k-UAP accuracy vs ϵ for CIFAR10 DNNs.

(a) DiffAI (CIFAR10) (b) CITRUS (CIFAR10)

Figure 4: Average Worst Case k-UAP accuracy for different k values for CIFAR10 ConvSmall DNNs.

7 Conclusion394

We present RABBit, a general framework for improving the precision of relational verification395

of DNNs through BaB methods specifically designed to utilize dependencies across executions.396

Our experiments, on various DNN architectures, and training methods demonstrate that RABBit397

significantly outperforms both SOTA relational and non-relational verifiers for relational properties.398

Although we focus on the worst-case UAP accuracy RABBit can be extended to properties involving399

different DNNs, such as local equivalence of DNN pairs Paulsen et al. [2020] or properties defined400

over an ensemble of DNNs.401
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A Formal encoding of relational properties558

A.1 k-UAP verification559

Given a set of k points X = {x1, ...,xk}where for all i ∈ [k], xi ∈ Rn0 and ϵ ∈ R we can first define560

individual input constraints used to define L∞ input region for each execution ∀i ∈ [k].ϕiin(x
∗
i ) =561

∥x∗
i − xi∥∞ ≤ ϵ. We define Φδ(x∗

1, . . . ,x
∗
k) as follows:562

Φδ(x∗
1, . . . ,x

∗
k) =

∧
(i,j∈[k])∧(i<j)

(x∗
i − x∗

j = xi − xj) (2)

Then, we have the input specification as Φ(x∗
1, . . . ,x

∗
k) =

∧k
i=1 ϕ

i
in(x

∗
i ) ∧ Φδ(x∗

1, . . . ,x
∗
k).563

Next, we define Ψ(x∗
1, . . . ,x

∗
k) as conjunction of k clauses each defined by ψi(yi) where yi =564

N(x∗
i ). Now we define ψi(yi) =

∧nl

j=1(ci,j
Tyi ≥ 0) where ci,j ∈ Rnl is defined as follows565

∀a ∈ [nl].ci,j,a =


1 if a ̸= j and a is the correct label for yi

−1 if a = j and a is not the correct label for yi

0 otherwise
(3)

In this case, the tuple of inputs (x∗
1, . . . ,x

∗
k) satisfies the input specification Φ(x∗

1, . . . ,x
∗
k) iff for566

all i ∈ [k], x∗
i = xi + δδδ where δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ. Hence, the relational property (Φ,Ψ)567

defined above verifies whether there is an adversarial perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ that can568

misclassify all k inputs. Next, we show the formulation for the worst-case UAP accuracy of the569

k-UAP verification problem as described in section 3. Let, for any δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, µ(δ)570

denotes the number of clauses (ψi) in Ψ that are satisfied. Then µ(δ) is defined as follows571

zi(δδδ) =

{
1 ψi(N(xi + δδδ)) is True
0 otherwise

(4)

µ(δδδ) =

k∑
i=1

zi(δδδ) (5)

Since ψi(N(xi + δδδ)) is True iff the perturbed input xi + δδδ is correctly classified by N , for any572

δδδ ∈ Rn0 and ∥δδδ∥∞ ≤ ϵ, µ(δδδ) captures the number of correct classifications over the set of perturbed573

inputs {x1 + δδδ, . . . ,xk + δδδ}. The worst-case k-UAP accuracy M0(Φ,Ψ) for (Φ,Ψ) is as follows574

M0(Φ,Ψ) = min
δδδ∈Rn0 , ∥δδδ∥≤ϵ

µ(δδδ) (6)

B Details of strong bounding575

We first show that given fixed linear approximations {(L1, b1), . . . (Ln, bn)} corresponding to n576

executions of N if the optimal value t∗ of the following linear program ≥ 0 then the n executions do577

not have a common peturbation.578

min t s.t. ∥δδδ∥∞ ≤ ϵ
Li

T (xi + δδδ) + bi ≤ t ∀i ∈ [n] (7)
Now in the first step, we compute the Lagrangian dual of the linear program from Eq. 7. The579

Lagrangian Dual is as follows where for all i ∈ [n], λi ≥ 0 are Lagrange multipliers.580

max
0≤λi

min
t∈R,∥δδδ∥∞≤ϵ

(1−
n∑

i=1

λi)× t+
n∑

i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
We set the coefficient of the unbounded variable t to 0 to avoid cases where min

t∈R,∥δδδ∥∞≤ϵ
(1 −581 ∑n

i=1 λi) × t +
∑n

i=1 λi ×
(
LT
i (xi + δδδ) + bi

)
= −∞. This leads to the following Lagrangian582

Dual form583

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
LT
i (xi + δδδ) + bi

)
where

n∑
i=1

λi = 1
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Now for every subproblem, replacing the branching constraints with βββ dual variables results584

in the parametric linear approximations of N specified by (Li(αααi,βββi), bi(αααi,βββi)) for each585

execution i ∈ [n]. Then the Lagrangian Dual with the parametric linear approximations586

{(L1(ααα1,βββ1), b1(ααα1,βββ1)), . . . , (Ln(αααn,βββn), bn(αααn,βββn))} is as follows587

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

where
n∑

i=1

λi = 1

Theorem 4.1. If minF(S) maxαααi,βββi,λi
−ϵ×∥

∑
i∈S λi×Li(αααi,βββi)∥1 +

∑
i∈S λi× ai(αααi,βββi) ≥ 0588

then executions in S do not have common perturbation δδδ ∈ Rn0 with ∥δδδ∥∞ ≤ ϵ.589

Proof. First, we show that min
∥δδδ∥∞≤ϵ

∑n
i=1 λi ×

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= −ϵ ×590

∥
∑n

i=1 λi × Li(αααi,βββi)∥1 +
∑n

i=1 λi × ai(αααi,βββi).591

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= min
∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi,βββi)
T (δδδ) +

n∑
i=1

λi ×
(
bi(αααi,βββi) + Li(αααi,βββi)

Txi

)
=

n∑
i=1

λi × ai(αααi,βββi) + min
∥δδδ∥∞≤ϵ

n∑
i=1

λi × Li(αααi,βββi)
T (δδδ)

=

n∑
i=1

λi × ai(αααi,βββi)− ϵ× ∥
n∑

i=1

λi × Li(αααi,βββi)∥1 Using Hölder’s Inequality (8)

For fixed αααi,βββi, the optimal solution of the LP in Eq. 7 and subsequently of the Lagrangian gives us592

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

= min
∥δδδ∥∞≤ϵ

max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

provided
n∑

i=1

λi = 1 (9)

For each subproblem, for all αααi,βββi593

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ) ≥ min

∥δδδ∥∞≤ϵ
max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

Hence,594

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ)

≥ max
αααi,βββi

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

≥ max
αααi,βββi

max
0≤λi

min
∥δδδ∥∞≤ϵ

n∑
i=1

λi ×
(
Li(αααi,βββi)

T (xi + δδδ) + bi(αααi,βββi)
)

where
n∑

i=1

λi = 1 from Eq. 9

≥ max
αααi,βββi,0≤λi

n∑
i=1

λi × ai(αααi,βββi)− ϵ× ∥
n∑

i=1

λi × Li(αααi,βββi)∥1 From Eq. 8 (10)

Finally, if minF(S) maxαααi,βββi,λi
−ϵ× ∥

∑
i∈S λi × Li(αααi,βββi)∥1 +

∑
i∈S λi × ai(αααi,βββi) ≥ 0 then,595

min
∥δδδ∥∞≤ϵ

max
1≤i≤n

ci
TN(xi + δδδ) ≥ 0 using Eq. 10

Since, min
∥δδδ∥∞≤ϵ

max1≤i≤n ci
TN(xi + δδδ) ≥ 0,

∨n
i=1 ψ

i(N(xi + δδδ)) holds for all δδδ ∈ Rn0 and596

∥δδδ∥∞ ≤ ϵ i.e. there does not exist any common perturbation.597
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C Details of strong branching598

Theorem 4.2. For any ααα,βββ , if L(ααα,βββ) ∈ Rn0 and b(ααα,βββ) ∈ R then min∥δδδ∥∞≤ϵ(L(ααα,βββ) −599

Lt)
T (x+ δδδ) + b(ααα,βββ) = −ϵ× ∥L(ααα,βββ)− Lt∥1 + (L(ααα,βββ)− Lt)

Tx+ b(ααα,βββ).600

Proof.

min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
T (x+ δδδ) + b(ααα,βββ)

= min
∥δδδ∥∞≤ϵ

(L(ααα,βββ)− Lt)
Tδδδ + b(ααα,βββ) + (L(ααα,βββ)− Lt)

Tx

= b(ααα,βββ) + (L(ααα,βββ)− Lt)
Tx+ min

∥δδδ∥∞≤ϵ
(L(ααα,βββ)− Lt)

Tδδδ

= b(ααα,βββ) + (L(ααα,βββ)− Lt)
Tx− ϵ× ∥(L(ααα,βββ)− Lt)∥1 Using Hölder’s Inequality

601

C.1 Projected gradient descent602

For each αiαiαi,βββi, after each step of gradient ascent (for maximization problem), we clip αiαiαi,βββi values603

to the corresponding ranges [lαil
α
il
α
i ,u

α
iu
α
iu
α
i ] [l

β
il
β
il
β
i ,u

β
iu
β
iu
β
i ] respectively. This is similar to the approach used in the604

SOTA non-relational bound refinement α, β-CROWN Wang et al. [2021b]. Since λi ∈ [0, 1] and605 ∑k
i=1 λi = 1 we replace λi =

sigmoid(xi)∑k
i=1 sigmoid(xi)

where xi ∈ R. For any values of (x1, . . . , xk) ∈ Rk606

the corresponding (λ1, . . . , λk) satisfy λi ∈ [0, 1] and
∑k

i=1 λi = 1. We then apply gradient ascent607

(for maximization problem) on (x1, . . . , xk) without any constraints.608
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D DNN Architectures609

D.1 DNN Architectures:610

Table 2: DNN Architecture Details

Dataset Model Type Train # Layers # Params

ConvSmall Conv Standard 4 80k
ConvSmall Conv DiffAI 4 80k

MNIST ConvSmall Conv SABR 4 80k
ConvSmall Conv CITRUS 4 80k
ConvBig Conv DiffAI 7 1.8M

ConvSmall Conv Standard 4 80k
CIFAR10 ConvSmall Conv DiffAI 4 80k

ConvSmall Conv SABR 4 80k
ConvSmall Conv CITRUS 4 80k
ConvBig Conv DiffAI 7 2.5M

ResNet-2B ResNet Standard 14 110K

D.2 Standard Accuracies for Evaluated DNNs:611

Table 3: DNN Standard Accuracies

Dataset Model Train Perturbation Bound (ϵ) Accuracy (%)

ConvSmall Standard 1/255 62.9
ConvSmall DiffAI 5/255 45.9

CIFAR10 ConvSmall SABR 2/255 63.6
ConvSmall CITRUS 2/255 63.9
ConvBig DiffAI 2/255 53.8

ResNet-2B Standard 1/255 67.5

ConvSmall Standard 0.10 32.5
ConvSmall DiffAI 0.13 32.5

MNIST ConvSmall SABR 0.15 48.7
ConvSmall CITRUS 0.15 48.6
ConvBig DiffAI 0.2 38.9

E Average Improvement in t∗ with Strong Branching612

Table 4: Average Improvement in t∗ with Strong Bounding

Dataset Network Training Perturbation RACoon α, β-CROWN
Structure Method Bound (ϵ) Avg. Improvement (%) 95% CI Avg. Improvement (%) 95% CI

ConvSmall DiffAI 5/255 108.7 [93.9, 126.1] 102.5 [92.7, 115.4]
CIFAR ConvSmall CITRUS 2/255 77.9 [75.3, 81.6] 86.9 [86.2, 88.1]

ConvSmall DiffAI 5/255 57.7 [55.5, 60.2] 54.4 [53.0, 56.0]
MNIST ConvSmall CITRUS 2/255 40.8 [39.8, 41.9] 37.1 [36.4, 37.8]

F MNIST k-UAP Verification Vs Time613

(a) DiffAI (MNIST) (b) SABR (MNIST) (c) CITRUS (MNIST)

Figure 5: Average Worst-Case k-UAP Accuracy vs Time for ConvSmall MNIST DNNs.
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G Additional k-UAP verification results for different ϵ, k, and kt values614

G.1 Different ϵ values for MNIST networks:615

(a) DiffAI (MNIST) (b) CITRUS (MNIST)

Figure 6: Average worst case k-UAP accuracy vs ϵ for MNIST DNNs.

G.2 Different k values for MNIST networks:616

(a) DiffAI (MNIST) (b) CITRUS (MNIST)

Figure 7: Average Worst Case k-UAP accuracy for different k values for MNIST ConvSmall DNNs.
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G.3 Different kt values:617

Table 5: Analysis of RABBit on MNIST for Different kt values

Dataset Network Training Perturbation kt
Structure Method Bound (ϵ) 10 15 20

ConvSmall DiffAI 0.13 69.6 72.8 75.2
MNIST ConvSmall CITRUS 0.15 56.8 60.4 61.6

Table 6: Analysis of RABBit on CIFAR for Different kt values

Dataset Network Training Perturbation kt
Structure Method Bound (ϵ) 8 9 10

ConvSmall DiffAI 5/255 58.8 59.6 59.8
CIFAR ConvSmall CITRUS 2/255 83.0 83.6 83.6
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NeurIPS Paper Checklist618

1. Claims619

Question: Do the main claims made in the abstract and introduction accurately reflect the620

paper’s contributions and scope?621

Answer: [Yes]622

Justification: See Section 1 for main claims and contributions. The main claims made in this623

section and the abstract reflect the paper’s scope and contributions.624

Guidelines:625

• The answer NA means that the abstract and introduction do not include the claims626

made in the paper.627

• The abstract and/or introduction should clearly state the claims made, including the628

contributions made in the paper and important assumptions and limitations. A No or629

NA answer to this question will not be perceived well by the reviewers.630

• The claims made should match theoretical and experimental results, and reflect how631

much the results can be expected to generalize to other settings.632

• It is fine to include aspirational goals as motivation as long as it is clear that these goals633

are not attained by the paper.634

2. Limitations635

Question: Does the paper discuss the limitations of the work performed by the authors?636

Answer: [Yes]637

Justification: See end of Section 5 for the limitations.638

Guidelines:639

• The answer NA means that the paper has no limitation while the answer No means that640

the paper has limitations, but those are not discussed in the paper.641

• The authors are encouraged to create a separate "Limitations" section in their paper.642

• The paper should point out any strong assumptions and how robust the results are to643

violations of these assumptions (e.g., independence assumptions, noiseless settings,644

model well-specification, asymptotic approximations only holding locally). The authors645

should reflect on how these assumptions might be violated in practice and what the646

implications would be.647

• The authors should reflect on the scope of the claims made, e.g., if the approach was648

only tested on a few datasets or with a few runs. In general, empirical results often649

depend on implicit assumptions, which should be articulated.650

• The authors should reflect on the factors that influence the performance of the approach.651

For example, a facial recognition algorithm may perform poorly when image resolution652

is low or images are taken in low lighting. Or a speech-to-text system might not be653

used reliably to provide closed captions for online lectures because it fails to handle654

technical jargon.655

• The authors should discuss the computational efficiency of the proposed algorithms656

and how they scale with dataset size.657

• If applicable, the authors should discuss possible limitations of their approach to658

address problems of privacy and fairness.659

• While the authors might fear that complete honesty about limitations might be used by660

reviewers as grounds for rejection, a worse outcome might be that reviewers discover661

limitations that aren’t acknowledged in the paper. The authors should use their best662

judgment and recognize that individual actions in favor of transparency play an impor-663

tant role in developing norms that preserve the integrity of the community. Reviewers664

will be specifically instructed to not penalize honesty concerning limitations.665

3. Theory Assumptions and Proofs666

Question: For each theoretical result, does the paper provide the full set of assumptions and667

a complete (and correct) proof?668

Answer: [Yes]669
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Justification:670

Guidelines:671

• The answer NA means that the paper does not include theoretical results.672

• All the theorems, formulas, and proofs in the paper should be numbered and cross-673

referenced.674

• All assumptions should be clearly stated or referenced in the statement of any theorems.675

• The proofs can either appear in the main paper or the supplemental material, but if676

they appear in the supplemental material, the authors are encouraged to provide a short677

proof sketch to provide intuition.678

• Inversely, any informal proof provided in the core of the paper should be complemented679

by formal proofs provided in appendix or supplemental material.680

• Theorems and Lemmas that the proof relies upon should be properly referenced.681

4. Experimental Result Reproducibility682

Question: Does the paper fully disclose all the information needed to reproduce the main ex-683

perimental results of the paper to the extent that it affects the main claims and/or conclusions684

of the paper (regardless of whether the code and data are provided or not)?685

Answer: [Yes]686

Justification: See experimental setup in Section 6.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• If the paper includes experiments, a No answer to this question will not be perceived690

well by the reviewers: Making the paper reproducible is important, regardless of691

whether the code and data are provided or not.692

• If the contribution is a dataset and/or model, the authors should describe the steps taken693

to make their results reproducible or verifiable.694

• Depending on the contribution, reproducibility can be accomplished in various ways.695

For example, if the contribution is a novel architecture, describing the architecture fully696

might suffice, or if the contribution is a specific model and empirical evaluation, it may697

be necessary to either make it possible for others to replicate the model with the same698

dataset, or provide access to the model. In general. releasing code and data is often699

one good way to accomplish this, but reproducibility can also be provided via detailed700

instructions for how to replicate the results, access to a hosted model (e.g., in the case701

of a large language model), releasing of a model checkpoint, or other means that are702

appropriate to the research performed.703

• While NeurIPS does not require releasing code, the conference does require all submis-704

sions to provide some reasonable avenue for reproducibility, which may depend on the705

nature of the contribution. For example706

(a) If the contribution is primarily a new algorithm, the paper should make it clear how707

to reproduce that algorithm.708

(b) If the contribution is primarily a new model architecture, the paper should describe709

the architecture clearly and fully.710

(c) If the contribution is a new model (e.g., a large language model), then there should711

either be a way to access this model for reproducing the results or a way to reproduce712

the model (e.g., with an open-source dataset or instructions for how to construct713

the dataset).714

(d) We recognize that reproducibility may be tricky in some cases, in which case715

authors are welcome to describe the particular way they provide for reproducibility.716

In the case of closed-source models, it may be that access to the model is limited in717

some way (e.g., to registered users), but it should be possible for other researchers718

to have some path to reproducing or verifying the results.719

5. Open access to data and code720

Question: Does the paper provide open access to the data and code, with sufficient instruc-721

tions to faithfully reproduce the main experimental results, as described in supplemental722

material?723
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Answer: [Yes]724

Justification: We provide the code to replicate the main results of this paper.725

Guidelines:726

• The answer NA means that paper does not include experiments requiring code.727

• Please See Section the NeurIPS code and data submission guidelines (https://nips.728

cc/public/guides/CodeSubmissionPolicy) for more details.729

• While we encourage the release of code and data, we understand that this might not be730

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not731

including code, unless this is central to the contribution (e.g., for a new open-source732

benchmark).733

• The instructions should contain the exact command and environment needed to run to734

reproduce the results. See Section the NeurIPS code and data submission guidelines735

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.736

• The authors should provide instructions on data access and preparation, including how737

to access the raw data, preprocessed data, intermediate data, and generated data, etc.738

• The authors should provide scripts to reproduce all experimental results for the new739

proposed method and baselines. If only a subset of experiments are reproducible, they740

should state which ones are omitted from the script and why.741

• At submission time, to preserve anonymity, the authors should release anonymized742

versions (if applicable).743

• Providing as much information as possible in supplemental material (appended to the744

paper) is recommended, but including URLs to data and code is permitted.745

6. Experimental Setting/Details746

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-747

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the748

results?749

Answer: [Yes]750

Justification: See experimental setup in Section 6.751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• The experimental setting should be presented in the core of the paper to a level of detail754

that is necessary to appreciate the results and make sense of them.755

• The full details can be provided either with the code, in appendix, or as supplemental756

material.757

7. Experiment Statistical Significance758

Question: Does the paper report error bars suitably and correctly defined or other appropriate759

information about the statistical significance of the experiments?760

Answer: [Yes]761

Justification: RABBit is a deterministic verifier. The experiment "Evaluating Bound Im-762

provement" (Section 6) is the only randomized experiment in the paper. We report the mean763

and 95% confidence intervals of the experiment in Appendix E.764

Guidelines:765

• The answer NA means that the paper does not include experiments.766

• The authors should answer "Yes" if the results are accompanied by error bars, confi-767

dence intervals, or statistical significance tests, at least for the experiments that support768

the main claims of the paper.769

• The factors of variability that the error bars are capturing should be clearly stated (for770

example, train/test split, initialization, random drawing of some parameter, or overall771

run with given experimental conditions).772

• The method for calculating the error bars should be explained (closed form formula,773

call to a library function, bootstrap, etc.)774

• The assumptions made should be given (e.g., Normally distributed errors).775
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• It should be clear whether the error bar is the standard deviation or the standard error776

of the mean.777

• It is OK to report 1-sigma error bars, but one should state it. The authors should778

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis779

of Normality of errors is not verified.780

• For asymmetric distributions, the authors should be careful not to show in tables or781

figures symmetric error bars that would yield results that are out of range (e.g. negative782

error rates).783

• If error bars are reported in tables or plots, The authors should explain in the text how784

they were calculated and reference the corresponding figures or tables in the text.785

8. Experiments Compute Resources786

Question: For each experiment, does the paper provide sufficient information on the com-787

puter resources (type of compute workers, memory, time of execution) needed to reproduce788

the experiments?789

Answer: [Yes]790
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